热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

PHP实现AES256加密算法实例

这篇文章主要介绍了PHP实现AES256加密算法,包括了对应的类文件及演示demo实例,并附带另一个PHPmcrypt加密实例供大家参考借鉴,需要的朋友可以参考下

本文实例讲述了PHP实现AES256加密算法的方法,是较为常见的一种加密算法。分享给大家供大家参考。具体如下:

aes.class.php文件如下:

<&#63;php 
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ 
/* AES implementation in PHP (c) Chris Veness 2005-2011. Right of free use is granted for all  */ 
/*  commercial or non-commercial use under CC-BY licence. No warranty of any form is offered.  */ 
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ 
  
class Aes { 
  
 /** 
  * AES Cipher function: encrypt 'input' with Rijndael algorithm 
  * 
  * @param input message as byte-array (16 bytes) 
  * @param w   key schedule as 2D byte-array (Nr+1 x Nb bytes) - 
  *       generated from the cipher key by keyExpansion() 
  * @return   ciphertext as byte-array (16 bytes) 
  */ 
 public static function cipher($input, $w) {  // main cipher function [§5.1] 
  $Nb = 4;         // block size (in words): no of columns in state (fixed at 4 for AES) 
  $Nr = count($w)/$Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys 
  
  $state = array(); // initialise 4xNb byte-array 'state' with input [§3.4] 
  for ($i=0; $i<4*$Nb; $i++) $state[$i%4][floor($i/4)] = $input[$i]; 
  
  $state = self::addRoundKey($state, $w, 0, $Nb); 
  
  for ($round=1; $round<$Nr; $round++) { // apply Nr rounds 
   $state = self::subBytes($state, $Nb); 
   $state = self::shiftRows($state, $Nb); 
   $state = self::mixColumns($state, $Nb); 
   $state = self::addRoundKey($state, $w, $round, $Nb); 
  } 
  
  $state = self::subBytes($state, $Nb); 
  $state = self::shiftRows($state, $Nb); 
  $state = self::addRoundKey($state, $w, $Nr, $Nb); 
  
  $output = array(4*$Nb); // convert state to 1-d array before returning [§3.4] 
  for ($i=0; $i<4*$Nb; $i++) $output[$i] = $state[$i%4][floor($i/4)]; 
  return $output; 
 } 
  
  
 private static function addRoundKey($state, $w, $rnd, $Nb) { // xor Round Key into state S [§5.1.4] 
  for ($r=0; $r<4; $r++) { 
   for ($c=0; $c<$Nb; $c++) $state[$r][$c] ^= $w[$rnd*4+$c][$r]; 
  } 
  return $state; 
 } 
  
 private static function subBytes($s, $Nb) {  // apply SBox to state S [§5.1.1] 
  for ($r=0; $r<4; $r++) { 
   for ($c=0; $c<$Nb; $c++) $s[$r][$c] = self::$sBox[$s[$r][$c]]; 
  } 
  return $s; 
 } 
  
 private static function shiftRows($s, $Nb) {  // shift row r of state S left by r bytes [§5.1.2] 
  $t = array(4); 
  for ($r=1; $r<4; $r++) { 
   for ($c=0; $c<4; $c++) $t[$c] = $s[$r][($c+$r)%$Nb]; // shift into temp copy 
   for ($c=0; $c<4; $c++) $s[$r][$c] = $t[$c];      // and copy back 
  }     // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): 
  return $s; // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf  
 } 
  
 private static function mixColumns($s, $Nb) {  // combine bytes of each col of state S [§5.1.3] 
  for ($c=0; $c<4; $c++) { 
   $a = array(4); // 'a' is a copy of the current column from 's' 
   $b = array(4); // 'b' is a&#8226;{02} in GF(2^8) 
   for ($i=0; $i<4; $i++) { 
    $a[$i] = $s[$i][$c]; 
    $b[$i] = $s[$i][$c]&0x80 &#63; $s[$i][$c]<<1 ^ 0x011b : $s[$i][$c]<<1; 
   } 
   // a[n] ^ b[n] is a&#8226;{03} in GF(2^8) 
   $s[0][$c] = $b[0] ^ $a[1] ^ $b[1] ^ $a[2] ^ $a[3]; // 2*a0 + 3*a1 + a2 + a3 
   $s[1][$c] = $a[0] ^ $b[1] ^ $a[2] ^ $b[2] ^ $a[3]; // a0 * 2*a1 + 3*a2 + a3 
   $s[2][$c] = $a[0] ^ $a[1] ^ $b[2] ^ $a[3] ^ $b[3]; // a0 + a1 + 2*a2 + 3*a3 
   $s[3][$c] = $a[0] ^ $b[0] ^ $a[1] ^ $a[2] ^ $b[3]; // 3*a0 + a1 + a2 + 2*a3 
  } 
  return $s; 
 } 
  
 /** 
  * Key expansion for Rijndael cipher(): performs key expansion on cipher key 
  * to generate a key schedule 
  * 
  * @param key cipher key byte-array (16 bytes) 
  * @return  key schedule as 2D byte-array (Nr+1 x Nb bytes) 
  */ 
 public static function keyExpansion($key) { // generate Key Schedule from Cipher Key [§5.2] 
  $Nb = 4;       // block size (in words): no of columns in state (fixed at 4 for AES) 
  $Nk = count($key)/4; // key length (in words): 4/6/8 for 128/192/256-bit keys 
  $Nr = $Nk + 6;    // no of rounds: 10/12/14 for 128/192/256-bit keys 
  
  $w = array(); 
  $temp = array(); 
  
  for ($i=0; $i<$Nk; $i++) { 
   $r = array($key[4*$i], $key[4*$i+1], $key[4*$i+2], $key[4*$i+3]); 
   $w[$i] = $r; 
  } 
  
  for ($i=$Nk; $i<($Nb*($Nr+1)); $i++) { 
   $w[$i] = array(); 
   for ($t=0; $t<4; $t++) $temp[$t] = $w[$i-1][$t]; 
   if ($i % $Nk == 0) { 
    $temp = self::subWord(self::rotWord($temp)); 
    for ($t=0; $t<4; $t++) $temp[$t] ^= self::$rCon[$i/$Nk][$t]; 
   } else if ($Nk > 6 && $i%$Nk == 4) { 
    $temp = self::subWord($temp); 
   } 
   for ($t=0; $t<4; $t++) $w[$i][$t] = $w[$i-$Nk][$t] ^ $temp[$t]; 
  } 
  return $w; 
 } 
  
 private static function subWord($w) {  // apply SBox to 4-byte word w 
  for ($i=0; $i<4; $i++) $w[$i] = self::$sBox[$w[$i]]; 
  return $w; 
 } 
  
 private static function rotWord($w) {  // rotate 4-byte word w left by one byte 
  $tmp = $w[0]; 
  for ($i=0; $i<3; $i++) $w[$i] = $w[$i+1]; 
  $w[3] = $tmp; 
  return $w; 
 } 
  
 // sBox is pre-computed multiplicative inverse in GF(2^8) used in subBytes and keyExpansion [§5.1.1] 
 private static $sBox = array( 
  0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 
  0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 
  0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 
  0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 
  0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 
  0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 
  0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 
  0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 
  0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 
  0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 
  0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 
  0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 
  0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 
  0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 
  0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 
  0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16); 
  
 // rCon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] 
 private static $rCon = array(  
  array(0x00, 0x00, 0x00, 0x00), 
  array(0x01, 0x00, 0x00, 0x00), 
  array(0x02, 0x00, 0x00, 0x00), 
  array(0x04, 0x00, 0x00, 0x00), 
  array(0x08, 0x00, 0x00, 0x00), 
  array(0x10, 0x00, 0x00, 0x00), 
  array(0x20, 0x00, 0x00, 0x00), 
  array(0x40, 0x00, 0x00, 0x00), 
  array(0x80, 0x00, 0x00, 0x00), 
  array(0x1b, 0x00, 0x00, 0x00), 
  array(0x36, 0x00, 0x00, 0x00) );  
}  
&#63;>

aesctr.class.php文件如下:

<&#63;php 
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ 
/* AES counter (CTR) mode implementation in PHP (c) Chris Veness 2005-2011. Right of free use is */ 
/*  granted for all commercial or non-commercial use under CC-BY licence. No warranty of any  */ 
/*  form is offered.                                      */ 
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ 
  
class AesCtr extends Aes { 
  
 /** 
  * Encrypt a text using AES encryption in Counter mode of operation 
  * - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf 
  * 
  * Unicode multi-byte character safe 
  * 
  * @param plaintext source text to be encrypted 
  * @param password the password to use to generate a key 
  * @param nBits   number of bits to be used in the key (128, 192, or 256) 
  * @param keep   keep 1:each not change 0:each change(default) 
  * @return     encrypted text 
  */ 
 public static function encrypt($plaintext, $password, $nBits, $keep=0) { 
  $blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES 
  if (!($nBits==128 || $nBits==192 || $nBits==256)) return ''; // standard allows 128/192/256 bit keys 
  // note PHP (5) gives us plaintext and password in UTF8 encoding! 
   
  // use AES itself to encrypt password to get cipher key (using plain password as source for  
  // key expansion) - gives us well encrypted key 
  $nBytes = $nBits/8; // no bytes in key 
  $pwBytes = array(); 
  for ($i=0; $i<$nBytes; $i++) $pwBytes[$i] = ord(substr($password,$i,1)) & 0xff; 
  $key = Aes::cipher($pwBytes, Aes::keyExpansion($pwBytes)); 
  $key = array_merge($key, array_slice($key, 0, $nBytes-16)); // expand key to 16/24/32 bytes long  
  
  // initialise 1st 8 bytes of counter block with nonce (NIST SP800-38A §B.2): [0-1] = millisec,  
  // [2-3] = random, [4-7] = seconds, giving guaranteed sub-ms uniqueness up to Feb 2106 
  $counterBlock = array(); 
 
  if($keep==0){ 
    $nOnce= floor(microtime(true)*1000);  // timestamp: milliseconds since 1-Jan-1970 
    $nOnceMs= $nonce%1000; 
    $nOnceSec= floor($nonce/1000); 
    $nOnceRnd= floor(rand(0, 0xffff)); 
  }else{ 
    $nOnce= 10000; 
    $nOnceMs= $nonce%1000; 
    $nOnceSec= floor($nonce/1000); 
    $nOnceRnd= 10000; 
  }   
 
  for ($i=0; $i<2; $i++) $counterBlock[$i]  = self::urs($nonceMs, $i*8) & 0xff; 
  for ($i=0; $i<2; $i++) $counterBlock[$i+2] = self::urs($nonceRnd, $i*8) & 0xff; 
  for ($i=0; $i<4; $i++) $counterBlock[$i+4] = self::urs($nonceSec, $i*8) & 0xff; 
   
  // and convert it to a string to go on the front of the ciphertext 
  $ctrTxt = ''; 
  for ($i=0; $i<8; $i++) $ctrTxt .= chr($counterBlock[$i]); 
  
  // generate key schedule - an expansion of the key into distinct Key Rounds for each round 
  $keySchedule = Aes::keyExpansion($key); 
  //print_r($keySchedule); 
   
  $blockCount = ceil(strlen($plaintext)/$blockSize); 
  $ciphertxt = array(); // ciphertext as array of strings 
   
  for ($b=0; $b<$blockCount; $b++) { 
   // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) 
   // done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB) 
   for ($c=0; $c<4; $c++) $counterBlock[15-$c] = self::urs($b, $c*8) & 0xff; 
   for ($c=0; $c<4; $c++) $counterBlock[15-$c-4] = self::urs($b/0x100000000, $c*8); 
  
   $cipherCntr = Aes::cipher($counterBlock, $keySchedule); // -- encrypt counter block -- 
  
   // block size is reduced on final block 
   $blockLength = $b<$blockCount-1 &#63; $blockSize : (strlen($plaintext)-1)%$blockSize+1; 
   $cipherByte = array(); 
    
   for ($i=0; $i<$blockLength; $i++) { // -- xor plaintext with ciphered counter byte-by-byte -- 
    $cipherByte[$i] = $cipherCntr[$i] ^ ord(substr($plaintext, $b*$blockSize+$i, 1)); 
    $cipherByte[$i] = chr($cipherByte[$i]); 
   } 
   $ciphertxt[$b] = implode('', $cipherByte); // escape troublesome characters in ciphertext 
  } 
  
  // implode is more efficient than repeated string concatenation 
  $ciphertext = $ctrTxt . implode('', $ciphertxt); 
  $ciphertext = base64_encode($ciphertext); 
  return $ciphertext; 
 } 
  
 /** 
  * Decrypt a text encrypted by AES in counter mode of operation 
  * 
  * @param ciphertext source text to be decrypted 
  * @param password  the password to use to generate a key 
  * @param nBits   number of bits to be used in the key (128, 192, or 256) 
  * @return      decrypted text 
  */ 
 public static function decrypt($ciphertext, $password, $nBits) { 
  $blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES 
  if (!($nBits==128 || $nBits==192 || $nBits==256)) return ''; // standard allows 128/192/256 bit keys 
  $ciphertext = base64_decode($ciphertext); 
  
  // use AES to encrypt password (mirroring encrypt routine) 
  $nBytes = $nBits/8; // no bytes in key 
  $pwBytes = array(); 
  for ($i=0; $i<$nBytes; $i++) $pwBytes[$i] = ord(substr($password,$i,1)) & 0xff; 
  $key = Aes::cipher($pwBytes, Aes::keyExpansion($pwBytes)); 
  $key = array_merge($key, array_slice($key, 0, $nBytes-16)); // expand key to 16/24/32 bytes long 
   
  // recover nonce from 1st element of ciphertext 
  $counterBlock = array(); 
  $ctrTxt = substr($ciphertext, 0, 8); 
  for ($i=0; $i<8; $i++) $counterBlock[$i] = ord(substr($ctrTxt,$i,1)); 
   
  // generate key schedule 
  $keySchedule = Aes::keyExpansion($key); 
  
  // separate ciphertext into blocks (skipping past initial 8 bytes) 
  $nBlocks = ceil((strlen($ciphertext)-8) / $blockSize); 
  $ct = array(); 
  for ($b=0; $b<$nBlocks; $b++) $ct[$b] = substr($ciphertext, 8+$b*$blockSize, 16); 
  $ciphertext = $ct; // ciphertext is now array of block-length strings 
  
  // plaintext will get generated block-by-block into array of block-length strings 
  $plaintxt = array(); 
   
  for ($b=0; $b<$nBlocks; $b++) { 
   // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) 
   for ($c=0; $c<4; $c++) $counterBlock[15-$c] = self::urs($b, $c*8) & 0xff; 
   for ($c=0; $c<4; $c++) $counterBlock[15-$c-4] = self::urs(($b+1)/0x100000000-1, $c*8) & 0xff; 
  
   $cipherCntr = Aes::cipher($counterBlock, $keySchedule); // encrypt counter block 
  
   $plaintxtByte = array(); 
   for ($i=0; $i>> operator nor unsigned ints 
  * 
  * @param a number to be shifted (32-bit integer) 
  * @param b number of bits to shift a to the right (0..31) 
  * @return  a right-shifted and zero-filled by b bits 
  */ 
 private static function urs($a, $b) { 
  $a &= 0xffffffff; $b &= 0x1f; // (bounds check) 
  if ($a&0x80000000 && $b>0) {  // if left-most bit set 
   $a = ($a>>1) & 0x7fffffff;  //  right-shift one bit & clear left-most bit 
   $a = $a >> ($b-1);      //  remaining right-shifts 
  } else {            // otherwise 
   $a = ($a>>$b);        //  use normal right-shift 
  }  
  return $a;  
 } 
}  
&#63;>

Demo实例程序如下:

<&#63;php  
require 'aes.class.php';   // AES PHP implementation 
require 'aesctr.class.php'; // AES Counter Mode implementation  
 
echo 'each change
'; $mstr = AesCtr::encrypt('Hello World', 'key', 256); echo "Encrypt String : $mstr
"; $dstr = AesCtr::decrypt($mstr, 'key', 256); echo "Decrypt String : $dstr
"; echo 'each not change
'; $mstr = AesCtr::encrypt('Hello World', 'key', 256, 1); // keep=1 echo "Encrypt String : $mstr
"; $dstr = AesCtr::decrypt($mstr, 'key', 256); echo "Decrypt String : $dstr
"; &#63;>

这里再介绍另一使用 PHP mcrypt 加解密方法:

/* aes 256 encrypt 
* @param String $ostr 
* @param String $securekey 
* @param String $type encrypt, decrypt 
*/ 
function aes($ostr, $securekey, $type='encrypt'){ 
  if($ostr==''){ 
    return ''; 
  } 
   
  $key = $securekey; 
  $iv = strrev($securekey); 
  $td = mcrypt_module_open('rijndael-256', '', 'ofb', ''); 
  mcrypt_generic_init($td, $key, $iv); 
 
  $str = ''; 
 
  switch($type){ 
    case 'encrypt': 
      $str = base64_encode(mcrypt_generic($td, $ostr)); 
      break; 
 
    case 'decrypt': 
      $str = mdecrypt_generic($td, base64_decode($ostr)); 
      break; 
  } 
 
  mcrypt_generic_deinit($td); 
 
  return $str; 
} 
 
// Demo 
$key = "fdipzone201314showmethemoney!@#$"; 
$str = "show me the money"; 
 
$ostr = aes($str, $key); 
echo "String 1: $ostr
"; $dstr = aes($ostr, $key, 'decrypt'); echo "String 2: $dstr
";

希望本文所述对大家php程序设计的学习有所帮助。


推荐阅读
  • 一、Hadoop来历Hadoop的思想来源于Google在做搜索引擎的时候出现一个很大的问题就是这么多网页我如何才能以最快的速度来搜索到,由于这个问题Google发明 ... [详细]
  • 学习SLAM的女生,很酷
    本文介绍了学习SLAM的女生的故事,她们选择SLAM作为研究方向,面临各种学习挑战,但坚持不懈,最终获得成功。文章鼓励未来想走科研道路的女生勇敢追求自己的梦想,同时提到了一位正在英国攻读硕士学位的女生与SLAM结缘的经历。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • Android中高级面试必知必会,积累总结
    本文介绍了Android中高级面试的必知必会内容,并总结了相关经验。文章指出,如今的Android市场对开发人员的要求更高,需要更专业的人才。同时,文章还给出了针对Android岗位的职责和要求,并提供了简历突出的建议。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • “你永远都不知道明天和‘公司的意外’哪个先来。”疫情期间,这是我们最战战兢兢的心情。但是显然,有些人体会不了。这份行业数据,让笔者“柠檬” ... [详细]
  • 生成对抗式网络GAN及其衍生CGAN、DCGAN、WGAN、LSGAN、BEGAN介绍
    一、GAN原理介绍学习GAN的第一篇论文当然由是IanGoodfellow于2014年发表的GenerativeAdversarialNetworks(论文下载链接arxiv:[h ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • 本文介绍了游戏开发中的人工智能技术,包括定性行为和非定性行为的分类。定性行为是指特定且可预测的行为,而非定性行为则具有一定程度的不确定性。其中,追逐算法是定性行为的具体实例。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • MACElasticsearch安装步骤及验证方法
    本文介绍了MACElasticsearch的安装步骤,包括下载ZIP文件、解压到安装目录、启动服务,并提供了验证启动是否成功的方法。同时,还介绍了安装elasticsearch-head插件的方法,以便于进行查询操作。 ... [详细]
  • 本文介绍了PhysioNet网站提供的生理信号处理工具箱WFDB Toolbox for Matlab的安装和使用方法。通过下载并添加到Matlab路径中或直接在Matlab中输入相关内容,即可完成安装。该工具箱提供了一系列函数,可以方便地处理生理信号数据。详细的安装和使用方法可以参考本文内容。 ... [详细]
  • 本文详细介绍了相机防抖的设置方法和使用技巧,包括索尼防抖设置、VR和Stabilizer档位的选择、机身菜单设置等。同时解释了相机防抖的原理,包括电子防抖和光学防抖的区别,以及它们对画质细节的影响。此外,还提到了一些运动相机的防抖方法,如大疆的Osmo Action的Rock Steady技术。通过本文,你将更好地理解相机防抖的重要性和使用技巧,提高拍摄体验。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
author-avatar
冷鹰一诺_412
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有