热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

P1257平面上的最接近点对

P1257平面上的最接近点对题目描述给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对
                                  P1257 平面上的最接近点对

题目描述

给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的。

输入输出格式

输入格式:

 

第一行:n;2≤n≤10000

接下来n行:每行两个实数:x y,表示一个点的行坐标和列坐标,中间用一个空格隔开。

 

输出格式:

 

仅一行,一个实数,表示最短距离,精确到小数点后面4位。

 

输入输出样例

输入样例#1:
3
1 1
1 2
2 2
输出样例#1:
1.0000

n^2可以卡过洛谷测评机 但是还是分治好

考虑以下分治算法:

设平面上的点都在点集S中,为了将S线性分割为大小大致相等的2个子集S1和S2,我们选取一垂直线l(方程:x=m)来作为分割直线。其中m为S中各点x坐标的中位数。由此将S分割为S1={p∈S|px≤m}和S2={p∈S|px>m}。从而使S1和S2分别位于直线l的左侧和右侧,且S=S1∪S2 。由于m是S中各点x坐标值的中位数,因此S1和S2中的点数大致相等。 递归地在S1和S2上解最接近点对问题,我们分别得到S1和S2中的最小距离δ1和δ2。现设δ=min (δ1,δ2)。

若S的最接近点对(p,q)之间的距离d(p,q)<δ则p和q必分属于S1和S2。不妨设p∈S1,q∈S2。那么p和q距直线l的距离均小于δ。因此,我们若用P1和P2分别表示直线l的左边和右边的宽为δ的2个垂直长条,则p∈S1,q∈S2

此时,P1中所有点与P2中所有点构成的点对均为最接近点对的候选者。在最坏情况下有n^2/4对这样的候选者。但是P1和P2中的点具有以下的稀疏性质,它使我们不必检查所有这n2/4对候选者。考虑P1中任意一点p,它若与P2中的点q构成最接近点对的候选者,则必有d(p,q)<δ。满足这个条件的P2中的点有多少个呢?容易看出这样的点一定落在一个δ×2δ的矩形R中,

由δ的意义可知P2中任何2个S中的点的距离都不小于δ。由此可以推出矩形R中最多只有6个S中的点。事实上,我们可以将矩形R的长为2δ的边3等分,将它的长为δ的边2等分,由此导出6个(δ/2)×(2δ/3)的矩形。

因此d(u,v)≤5δ/6<δ 。这与δ的意义相矛盾。也就是说矩形R中最多只有6个S中的点。由于这种稀疏性质,对于P1中任一点p,P2中最多只有6个点与它构成最接近点对的候选者。因此,在分治法的合并步骤中,我们最多只需要检查6×n/2=3n对候选者,而不是n^2/4对候选者。

我们只知道对于P1中每个S1中的点p最多只需要检查P2中的6个点,但是我们并不确切地知道要检查哪6个点。为了解决这个问题,我们可以将p和P2中所有S2的点投影到垂直线l上。由于能与p点一起构成最接近点对候选者的S2中点一定在矩形R中,所以它们在直线l上的投影点距p在l上投影点的距离小于δ。由上面的分析可知,这种投影点最多只有6个。因此,若将P1和P2中所有S的点按其y坐标排好序,则对P1中所有点p,对排好序的点列作一次扫描,就可以找出所有最接近点对的候选者,对P1中每一点最多只要检查P2中排好序的相继6个点。

至此,我们用分治法求出平面最接近点对。

 
  
 1 #include 
 2 #include 
 3 #include 
 4 #include 
 5 
 6 const double INF=0x3f3f3fLL;
 7 const int MAXN=200010;
 8 
 9 int n;
10 
11 int t[MAXN];
12 
13 struct node {
14     double x,y;
15     friend inline bool operator < (node x,node y) {
16         if(x.x==y.x) return x.y<y.y;
17         return x.x<y.x;
18     }
19 };
20 node E[MAXN];
21 
22 inline double cal(int i,int j) {
23     double x=(E[i].x-E[j].x)*(E[i].x-E[j].x);
24     double y=(E[i].y-E[j].y)*(E[i].y-E[j].y);
25     return sqrt(x+y);
26 }
27 
28 inline bool cmp(int x,int y) {
29     return E[x].y<E[y].y;
30 }
31 
32 inline double merge(int l,int r) {
33     double d=INF;
34     if(l==r) return d;
35     if(l+1==r) return cal(l,r);
36     int mid=(l+r)>>1;
37     double disl=merge(l,mid);
38     double disr=merge(mid+1,r);
39     d=disldisl:disr;
40     int tot=0;
41     for(int i=l;i<=r;++i) 
42       if(abs(E[mid].x-E[i].x)<=d) 
43         t[++tot]=i;
44     std::sort(t+1,t+1+tot,cmp);
45     for(int i=1;i<=tot;++i)
46       for(int j=i+1;j<=tot&&E[t[j]].y-E[t[i]].yj) {
47           double dis=cal(t[i],t[j]);
48           d=dd:dis;
49       }
50     return d;
51 }
52 
53 int hh() {
54     scanf("%d",&n);
55     for(int i=1;i<=n;++i) 
56       scanf("%lf%lf",&E[i].x,&E[i].y);
57     std::sort(E+1,E+1+n);
58     double ans=merge(1,n);
59     printf("%.4lf\n",ans);
60     return 0;
61 }
62 
63 int sb=hh();
64 int main(int argc,char**argv) {;}
代码

 




推荐阅读
  • 本文介绍了一个题目的解法,通过二分答案来解决问题,但困难在于如何进行检查。文章提供了一种逃逸方式,通过移动最慢的宿管来锁门时跑到更居中的位置,从而使所有合格的寝室都居中。文章还提到可以分开判断两边的情况,并使用前缀和的方式来求出在任意时刻能够到达宿管即将锁门的寝室的人数。最后,文章提到可以改成O(n)的直接枚举来解决问题。 ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 本文介绍了设计师伊振华受邀参与沈阳市智慧城市运行管理中心项目的整体设计,并以数字赋能和创新驱动高质量发展的理念,建设了集成、智慧、高效的一体化城市综合管理平台,促进了城市的数字化转型。该中心被称为当代城市的智能心脏,为沈阳市的智慧城市建设做出了重要贡献。 ... [详细]
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • c语言\n不换行,c语言printf不换行
    本文目录一览:1、C语言不换行输入2、c语言的 ... [详细]
  • 本文介绍了为什么要使用多进程处理TCP服务端,多进程的好处包括可靠性高和处理大量数据时速度快。然而,多进程不能共享进程空间,因此有一些变量不能共享。文章还提供了使用多进程实现TCP服务端的代码,并对代码进行了详细注释。 ... [详细]
  • 本文介绍了解决二叉树层序创建问题的方法。通过使用队列结构体和二叉树结构体,实现了入队和出队操作,并提供了判断队列是否为空的函数。详细介绍了解决该问题的步骤和流程。 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • Linux环境变量函数getenv、putenv、setenv和unsetenv详解
    本文详细解释了Linux中的环境变量函数getenv、putenv、setenv和unsetenv的用法和功能。通过使用这些函数,可以获取、设置和删除环境变量的值。同时给出了相应的函数原型、参数说明和返回值。通过示例代码演示了如何使用getenv函数获取环境变量的值,并打印出来。 ... [详细]
  • 3.223.28周学习总结中的贪心作业收获及困惑
    本文是对3.223.28周学习总结中的贪心作业进行总结,作者在解题过程中参考了他人的代码,但前提是要先理解题目并有解题思路。作者分享了自己在贪心作业中的收获,同时提到了一道让他困惑的题目,即input details部分引发的疑惑。 ... [详细]
  • 本文讨论了clone的fork与pthread_create创建线程的不同之处。进程是一个指令执行流及其执行环境,其执行环境是一个系统资源的集合。在调用系统调用fork创建一个进程时,子进程只是完全复制父进程的资源,这样得到的子进程独立于父进程,具有良好的并发性。但是二者之间的通讯需要通过专门的通讯机制,另外通过fork创建子进程系统开销很大。因此,在某些情况下,使用clone或pthread_create创建线程可能更加高效。 ... [详细]
  • 本文介绍了最长上升子序列问题的一个变种解法,通过记录拐点的位置,将问题拆分为左右两个LIS问题。详细讲解了算法的实现过程,并给出了相应的代码。 ... [详细]
  • Go语言实现堆排序的详细教程
    本文主要介绍了Go语言实现堆排序的详细教程,包括大根堆的定义和完全二叉树的概念。通过图解和算法描述,详细介绍了堆排序的实现过程。堆排序是一种效率很高的排序算法,时间复杂度为O(nlgn)。阅读本文大约需要15分钟。 ... [详细]
  • 本文讨论了一个数列求和问题,该数列按照一定规律生成。通过观察数列的规律,我们可以得出求解该问题的算法。具体算法为计算前n项i*f[i]的和,其中f[i]表示数列中有i个数字。根据参考的思路,我们可以将算法的时间复杂度控制在O(n),即计算到5e5即可满足1e9的要求。 ... [详细]
  • 李逍遥寻找仙药的迷阵之旅
    本文讲述了少年李逍遥为了救治婶婶的病情,前往仙灵岛寻找仙药的故事。他需要穿越一个由M×N个方格组成的迷阵,有些方格内有怪物,有些方格是安全的。李逍遥需要避开有怪物的方格,并经过最少的方格,找到仙药。在寻找的过程中,他还会遇到神秘人物。本文提供了一个迷阵样例及李逍遥找到仙药的路线。 ... [详细]
author-avatar
欢乐文艺女青年
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有