热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Linuxarm64系统调用过程学习记录

Linux5.10arm64系统调用过程

Linux5.10 arm64 系统调用过程学习记录

      • 简介
      • 用户态
      • svc
      • 进入内核态
      • 找到系统调用函数
      • 相关数据结构
      • 系统调用表
      • 参考

简介

进程使用标准库例程,库例程接下来调用内核函数,最终,由内核负责在各个请求进程之间公平而且流畅地共享资源和服务

用户态

#include

int main()
{
FILE *fp = NULL;
// w 打开一个文本文件,允许写入文件。如果文件不存在,则会创建一个新文件
fp = fopen("test.txt", "w");
fprintf(fp, "test\n");
fclose(fp);
}

编译,追踪

uname -a
Linux 5.11.0-27-generic #29~20.04.1-Ubuntu SMP Wed Aug 11 15:58:17 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux
gcc write_test.c -o write_test
ldd write_test # ldd 用于打印程序或者库文件所依赖的共享库列表
# 待补

svc

用户层进入内核态执行系统调用函数,通过异常方式(库函数完成),将当前系统调用函数的调用号放入x8寄存器,然后使用svc 指令,发起同步异常。参考[1]

Supervisor Call causes an exception to be taken to EL1.On executing an SVC instruction, the PE records the exception as a Supervisor Call exception in ESR_ELx, using the EC value 0x15 , and the value of the immediate argument.

进入内核态

以下源码参考:linux-5.10

// arch/arm64/kernel/entry.S
// 中断向量入口:
SYM_CODE_START(vectors)
kernel_ventry 1, sync_invalid // Synchronous EL1t
kernel_ventry 1, irq_invalid // IRQ EL1t
kernel_ventry 1, fiq_invalid // FIQ EL1t
kernel_ventry 1, error_invalid // Error EL1t
kernel_ventry 1, sync // Synchronous EL1h
kernel_ventry 1, irq // IRQ EL1h
kernel_ventry 1, fiq_invalid // FIQ EL1h
kernel_ventry 1, error // Error EL1h
kernel_ventry 0, sync // Synchronous 64-bit EL0 ,同步异常处理入口: 包括系统调用
kernel_ventry 0, irq // IRQ 64-bit EL0
kernel_ventry 0, fiq_invalid // FIQ 64-bit EL0
kernel_ventry 0, error // Error 64-bit EL0
// kernel_ventry 宏处理过程
.macro kernel_ventry, el, label, regsize = 64
.align 7
sub sp, sp, #S_FRAME_SIZE
b el\()\el\()_\label // 展开为: b el0_sync // 跳转到el0_sync
.endm
SYM_CODE_START_LOCAL_NOALIGN(el0_sync)
kernel_entry 0 // 保存用户态在寄存器数据
mov x0, sp
bl el0_sync_handler // el0_sync 处理函数
b ret_to_user
SYM_CODE_END(el0_sync)

找到系统调用函数

// arch/arm64/kernel/entry-common.c
asmlinkage void noinstr el0_sync_handler(struct pt_regs *regs) {
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
// arch/arm64/include/asm :
// #define ESR_ELx_EC_SVC64 (0x15)
case ESR_ELx_EC_SVC64:
el0_svc(regs);
break;
... // 其他异常
}
}
static void noinstr el0_svc(struct pt_regs *regs) {
...
do_el0_svc(regs);
}
// arch/arm64/kernel/syscall.c
void do_el0_svc(struct pt_regs *regs){
sve_user_discard();
// __NR_syscalls 系统调用总数
// sys_call_table 系统调用表 它每个系统调用的size是.long,即4byte
el0_svc_common(regs, regs->regs[8], __NR_syscalls, sys_call_table);
}
static void el0_svc_common(struct pt_regs *regs, int scno, int sc_nr,
const syscall_fn_t syscall_table[]) {
unsigned long flags = current_thread_info()->flags;
regs->orig_x0 = regs->regs[0];
regs->syscallno = scno;
....
invoke_syscall(regs, scno, sc_nr, syscall_table);
....
}
static void invoke_syscall(struct pt_regs *regs, unsigned int scno,
unsigned int sc_nr,
const syscall_fn_t syscall_table[])
{
long ret;
if (scno < sc_nr) {
syscall_fn_t syscall_fn;
syscall_fn = syscall_table[array_index_nospec(scno, sc_nr)];
ret = __invoke_syscall(regs, syscall_fn);
} else {
// 未定义的系统调用,返回—ENOSYS
ret = do_ni_syscall(regs, scno);
}
if (is_compat_task())
ret = lower_32_bits(ret);
regs->regs[0] = ret;
}
static long __invoke_syscall(struct pt_regs *regs, syscall_fn_t syscall_fn){
return syscall_fn(regs);
}

相关数据结构

// arch/arm64/include/asm/ptrace.h
struct pt_regs {
union {
struct user_pt_regs user_regs;
struct {
u64 regs[31];
u64 sp;
u64 pc;
u64 pstate;
};
};
u64 orig_x0;
#ifdef __AARCH64EB__
u32 unused2;
s32 syscallno;
#else
s32 syscallno;
u32 unused2;
#endif
u64 orig_addr_limit;
/* Only valid when ARM64_HAS_IRQ_PRIO_MASKING is enabled. */
u64 pmr_save;
u64 stackframe[2];
/* Only valid for some EL1 exceptions. */
u64 lockdep_hardirqs;
u64 exit_rcu;
};
// arch/arm64/include/asm/syscall.h
typedef long (*syscall_fn_t)(const struct pt_regs *regs);

系统调用表

// arch/arm64/kernel/sys.c
#undef __SYSCALL
#define __SYSCALL(nr, sym) asmlinkage long __arm64_##sym(const struct pt_regs *);
#include
// 对于ARM64架构,头文件“asm/unistd.h”是“arch/arm64/include/asm/unistd.h”。
#undef __SYSCALL
#define __SYSCALL(nr, sym) [nr] = __arm64_##sym,
const syscall_fn_t sys_call_table[__NR_syscalls] = {
[0 ... __NR_syscalls - 1] = __arm64_sys_ni_syscall,
#include
};
// arch/arm64/include/asm/unistd.h
#include
#define NR_syscalls (__NR_syscalls)
#define __ARCH_WANT_RENAMEAT
#define __ARCH_WANT_NEW_STAT
#define __ARCH_WANT_SET_GET_RLIMIT
#define __ARCH_WANT_TIME32_SYSCALLS
#define __ARCH_WANT_SYS_CLONE3
#include
// include/uapi/asm-generic/unistd.h
#define __NR_io_setup 0
__SC_COMP(__NR_io_setup, sys_io_setup, compat_sys_io_setup)
#define __NR_io_destroy 1
__SYSCALL(__NR_io_destroy, sys_io_destroy)
....
#define __NR_syscalls 441

通过上面文件的展开, 系统调用表为:

const syscall_fn_t sys_call_table[__NR_syscalls] = {
[0 ... __NR_syscalls - 1] = __arm64_sys_ni_syscall,__arm64_compat_sys_io_setup,__arm64_sys_io_destroy,......
};

系统调用宏

// arch/arm64/include/asm/syscall_wrapper.h
#define __SYSCALL_DEFINEx(x, name, ...) \
asmlinkage long __arm64_sys##name(const struct pt_regs *regs); \
ALLOW_ERROR_INJECTION(__arm64_sys##name, ERRNO); \
static long __se_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)); \
static inline long __do_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)); \
asmlinkage long __arm64_sys##name(const struct pt_regs *regs) \
{ \
return __se_sys##name(SC_ARM64_REGS_TO_ARGS(x,__VA_ARGS__)); \
} \
static long __se_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)) \
{ \
long ret = __do_sys##name(__MAP(x,__SC_CAST,__VA_ARGS__)); \
__MAP(x,__SC_TEST,__VA_ARGS__); \
__PROTECT(x, ret,__MAP(x,__SC_ARGS,__VA_ARGS__)); \
return ret; \
} \
static inline long __do_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__))

#define SYSCALL_DEFINE0(sname) \
SYSCALL_METADATA(_##sname, 0); \
asmlinkage long __arm64_sys_##sname(const struct pt_regs *__unused); \
ALLOW_ERROR_INJECTION(__arm64_sys_##sname, ERRNO); \
asmlinkage long __arm64_sys_##sname(const struct pt_regs *__unused)

// include/linux/syscalls.h
#ifndef SYSCALL_DEFINE0
#define SYSCALL_DEFINE0(sname) \
SYSCALL_METADATA(_##sname, 0); \
asmlinkage long sys_##sname(void); \
ALLOW_ERROR_INJECTION(sys_##sname, ERRNO); \
asmlinkage long sys_##sname(void)

#endif /* SYSCALL_DEFINE0 */
#define SYSCALL_DEFINE1(name, ...) SYSCALL_DEFINEx(1, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE2(name, ...) SYSCALL_DEFINEx(2, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE3(name, ...) SYSCALL_DEFINEx(3, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE4(name, ...) SYSCALL_DEFINEx(4, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE5(name, ...) SYSCALL_DEFINEx(5, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE6(name, ...) SYSCALL_DEFINEx(6, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE_MAXARGS 6
#define SYSCALL_DEFINEx(x, sname, ...) \
SYSCALL_METADATA(sname, x, __VA_ARGS__) \
__SYSCALL_DEFINEx(x, sname, __VA_ARGS__)

对于 write 系统调用宏展开

#define __NR_write 64 __SYSCALL(__NR_write, sys_write)
asmlinkage long __arm64_sys_write(const struct pt_regs *);
SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf, size_t, count) {
return ksys_write(fd, buf, count);
}

参考

  • 1 系统调用实现原理
  • 2 Linux内核系统调用原理与实现
  • 3 Linux系统调用之SYSCALL_DEFINE

版权声明:本文为qq_41146650原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/qq_41146650/article/details/124170953
推荐阅读
  • 本文介绍了PHP常量的定义和使用方法,包括常量的命名规则、大小写敏感性、全局范围和标量数据的限制。同时还提到了应尽量避免定义resource常量,并给出了使用define()函数定义常量的示例。 ... [详细]
  • 开发笔记:实验7的文件读写操作
    本文介绍了使用C++的ofstream和ifstream类进行文件读写操作的方法,包括创建文件、写入文件和读取文件的过程。同时还介绍了如何判断文件是否成功打开和关闭文件的方法。通过本文的学习,读者可以了解如何在C++中进行文件读写操作。 ... [详细]
  • 本文介绍了Windows操作系统的版本及其特点,包括Windows 7系统的6个版本:Starter、Home Basic、Home Premium、Professional、Enterprise、Ultimate。Windows操作系统是微软公司研发的一套操作系统,具有人机操作性优异、支持的应用软件较多、对硬件支持良好等优点。Windows 7 Starter是功能最少的版本,缺乏Aero特效功能,没有64位支持,最初设计不能同时运行三个以上应用程序。 ... [详细]
  • 本文介绍了在CentOS上安装Python2.7.2的详细步骤,包括下载、解压、编译和安装等操作。同时提供了一些注意事项,以及测试安装是否成功的方法。 ... [详细]
  • 在Docker中,将主机目录挂载到容器中作为volume使用时,常常会遇到文件权限问题。这是因为容器内外的UID不同所导致的。本文介绍了解决这个问题的方法,包括使用gosu和suexec工具以及在Dockerfile中配置volume的权限。通过这些方法,可以避免在使用Docker时出现无写权限的情况。 ... [详细]
  • 本文介绍了RPC框架Thrift的安装环境变量配置与第一个实例,讲解了RPC的概念以及如何解决跨语言、c++客户端、web服务端、远程调用等需求。Thrift开发方便上手快,性能和稳定性也不错,适合初学者学习和使用。 ... [详细]
  • 拥抱Android Design Support Library新变化(导航视图、悬浮ActionBar)
    转载请注明明桑AndroidAndroid5.0Loollipop作为Android最重要的版本之一,为我们带来了全新的界面风格和设计语言。看起来很受欢迎࿰ ... [详细]
  • switch语句的一些用法及注意事项
    本文介绍了使用switch语句时的一些用法和注意事项,包括如何实现"fall through"、default语句的作用、在case语句中定义变量时可能出现的问题以及解决方法。同时也提到了C#严格控制switch分支不允许贯穿的规定。通过本文的介绍,读者可以更好地理解和使用switch语句。 ... [详细]
  • 加密世界下一个主流叙事领域:L2、跨链桥、GameFi等
    本文介绍了加密世界下一个主流叙事的七个潜力领域,包括L2、跨链桥、GameFi等。L2作为以太坊的二层解决方案,在过去一年取得了巨大成功,跨链桥和互操作性是多链Web3中最重要的因素。去中心化的数据存储领域也具有巨大潜力,未来云存储市场有望达到1500亿美元。DAO和社交代币将成为购买和控制现实世界资产的重要方式,而GameFi作为数字资产在高收入游戏中的应用有望推动数字资产走向主流。衍生品市场也在不断发展壮大。 ... [详细]
  • 也就是|小窗_卷积的特征提取与参数计算
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。Dense和Conv2D根本区别在于,Den ... [详细]
  • imx6ull开发板驱动MT7601U无线网卡的方法和步骤详解
    本文详细介绍了在imx6ull开发板上驱动MT7601U无线网卡的方法和步骤。首先介绍了开发环境和硬件平台,然后说明了MT7601U驱动已经集成在linux内核的linux-4.x.x/drivers/net/wireless/mediatek/mt7601u文件中。接着介绍了移植mt7601u驱动的过程,包括编译内核和配置设备驱动。最后,列举了关键词和相关信息供读者参考。 ... [详细]
  • 本文介绍了在Windows环境下如何配置php+apache环境,包括下载php7和apache2.4、安装vc2015运行时环境、启动php7和apache2.4等步骤。希望对需要搭建php7环境的读者有一定的参考价值。摘要长度为169字。 ... [详细]
  • 本文介绍了Swing组件的用法,重点讲解了图标接口的定义和创建方法。图标接口用来将图标与各种组件相关联,可以是简单的绘画或使用磁盘上的GIF格式图像。文章详细介绍了图标接口的属性和绘制方法,并给出了一个菱形图标的实现示例。该示例可以配置图标的尺寸、颜色和填充状态。 ... [详细]
  • 本文介绍了使用Spark实现低配版高斯朴素贝叶斯模型的原因和原理。随着数据量的增大,单机上运行高斯朴素贝叶斯模型会变得很慢,因此考虑使用Spark来加速运行。然而,Spark的MLlib并没有实现高斯朴素贝叶斯模型,因此需要自己动手实现。文章还介绍了朴素贝叶斯的原理和公式,并对具有多个特征和类别的模型进行了讨论。最后,作者总结了实现低配版高斯朴素贝叶斯模型的步骤。 ... [详细]
  • 本文介绍了在Ubuntu下制作deb安装包及离线安装包的方法,通过备份/var/cache/apt/archives文件夹中的安装包,并建立包列表及依赖信息文件,添加本地源,更新源列表,可以在没有网络的情况下更新系统。同时提供了命令示例和资源下载链接。 ... [详细]
author-avatar
发酵床养殖菌种
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有