热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

Linux多线程编程(一)

linux多线程设计是指基于Linux操作系统下的多线程设计,包括多任务程序的设计,并发程序设计,网络程序设计,数据共享等。Linux系统下的多线程遵循POSIX线程接口,称为pthread。

一、什么是线程?

      线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。

二、什么时候使用多线程?     当多个任务可以并行执行时,可以为每个任务启动一个线程。
三、线程的创建     使用pthread_create函数。    

#include
int pthread_create (pthread_t *__restrict __newthread,//新创建的线程ID
			  __const pthread_attr_t *__restrict __attr,//线程属性
			  void *(*__start_routine) (void *),//新创建的线程从start_routine开始执行
			  void *__restrict __arg)//执行函数的参数

返回值:成功-0,失败-返回错误编号,可以用strerror(errno)函数得到错误信息
四、线程的终止   三种方式线程从执行函数返回,返回值是线程的退出码线程被同一进程的其他线程取消调用pthread_exit()函数退出。这里不是调用exit,因为线程调用exit函数,会导致线程所在的进程退出。

一个小例子:

启动两个线程,一个线程对全局变量num执行加1操作,执行五百次,一个线程对全局变量执行减1操作,同样执行五百次。

#include 
#include 
#include 
#include 
#include 

int num=0;
void *add(void *arg) {//线程执行函数,执行500次加法
  int i = 0,tmp;
  for (; i <500; i++)
  {
    tmp=num+1;
    num=tmp;
    printf("add+1,result is:%d\n",num);
  }
  return ((void *)0);
}
void *sub(void *arg)//线程执行函数,执行500次减法
{
  int i=0,tmp;
  for(;i<500;i++)
  {
    tmp=num-1;
    num=tmp;
    printf("sub-1,result is:%d\n",num);
  }
  return ((void *)0);
}
int main(int argc, char** argv) {
  
  pthread_t tid1,tid2;
  int err;
  void *tret;
  err=pthread_create(&tid1,NULL,add,NULL);//创建线程
  if(err!=0)
  {
    printf("pthread_create error:%s\n",strerror(err));
    exit(-1);
  }
  err=pthread_create(&tid2,NULL,sub,NULL);
  if(err!=0)
  {
    printf("pthread_create error:%s\n",strerror(err));
     exit(-1);
  }
  err=pthread_join(tid1,&tret);//阻塞等待线程id为tid1的线程,直到该线程退出
  if(err!=0)
  {
    printf("can not join with thread1:%s\n",strerror(err));
    exit(-1);
  }
  printf("thread 1 exit code %d\n",(int)tret);
  err=pthread_join(tid2,&tret);
  if(err!=0)
  {
    printf("can not join with thread1:%s\n",strerror(err));
    exit(-1);
  }
  printf("thread 2 exit code %d\n",(int)tret);
  return 0;
}

使用g++编译该文件(g++ main.cpp -o main)。此时会报错undefined reference to `pthread_create'。


报这个错误的原因是:pthread库不是linux默认的库,所以在编译时候需要指明libpthread.a库。

解决方法:在编译时,加上-lpthread参数。

执行结果:


乍一看,结果是对的,加500次,减500次,最后结果为0。但是仔细看所有的输出,你会发现有异样的东西。


    导致这个不和谐出现的原因是,两个线程可以对同一变量进行修改。假如线程1执行tmp=50+1后,被系统中断,此时线程2对num=50执行了减一操作,当线程1恢复,在执行num=tmp=51。而正确结果应为50。所以当多个线程对共享区域进行修改时,应该采用同步的方式。

五、线程同步线程同步的三种方式:

1、互斥量   互斥量用pthread_mutex_t数据类型来表示。   

两种方式初始化,第一种:赋值为常量PTHREAD_MUTEX_INITIALIZER;第二种,当互斥量为动态分配是,使用pthread_mutex_init函数进行初始化,使用pthread_mutex_destroy函数销毁。  

#include
int pthread_mutex_init (pthread_mutex_t *__mutex,
			    __const pthread_mutexattr_t *__mutexattr);
int pthread_mutex_destroy (pthread_mutex_t *__mutex);

返回值:成功-0,失败-错误编号 加解锁加锁调用pthread_mutex_lock,解锁调用pthread_mutex_unlock。

#include
int pthread_mutex_lock (pthread_mutex_t *__mutex);
int pthread_mutex_unlock (pthread_mutex_t *__mutex);


使用互斥量修改上一个程序(修改部分用红色标出):

pthread_mutex_t mylock=PTHREAD_MUTEX_INITIALIZER;
void *add(void *arg) {
  int i = 0,tmp;
  for (; i <500; i++)
  {
    pthread_mutex_lock(&mylock);
    tmp=num+1;
    num=tmp;
    printf("+1,result is:%d\n",num);
    pthread_mutex_unlock(&mylock);
  }
  return ((void *)0);
}
void *sub(void *arg)
{
  int i=0,tmp;
  for(;i<500;i++)
  {
    pthread_mutex_lock(&mylock);
    tmp=num-1;
    num=tmp;
    printf("-1,result is:%d\n",num);
    pthread_mutex_unlock(&mylock);
  }
  return ((void *)0);
}

2、读写锁   允许多个线程同时读,只能有一个线程同时写。适用于读的次数远大于写的情况。  读写锁初始化:  

#include
int pthread_rwlock_init (pthread_rwlock_t *__restrict __rwlock,
				__const pthread_rwlockattr_t *__restrict
				__attr);
int pthread_rwlock_destroy (pthread_rwlock_t *__rwlock);

返回值:成功--0,失败-错误编号
 加锁,这里分为读加锁和写加锁。
读加锁:  

int pthread_rwlock_rdlock (pthread_rwlock_t *__rwlock)


写加锁: 

int pthread_rwlock_wrlock (pthread_rwlock_t *__rwlock)


解锁用同一个函数

int pthread_rwlock_unlock (pthread_rwlock_t *__rwlock)

3、条件变量条件变量用pthread_cond_t数据类型表示。条件变量本身由互斥量保护,所以在改变条件状态前必须锁住互斥量。
条件变量初始化:
第一种,赋值常量PTHREAD_COND_INITIALIZER;第二种,使用pthread_cond_init函数

int pthread_cond_init (pthread_cond_t *__restrict __cond,
   __const pthread_condattr_t *__restrict
   __cond_attr);int pthread_cond_destroy (pthread_cond_t *__cond);


条件等待
使用pthread_cond_wait等待条件为真。

 pthread_cond_wait (pthread_cond_t *__restrict __cond,
   pthread_mutex_t *__restrict __mutex)

这里需要注意的是,调用pthread_cond_wait传递的互斥量已锁定,pthread_cond_wait将调用线程放入等待条件的线程列表,然后释放互斥量,在pthread_cond_wait返回时,再次锁定互斥量。
唤醒线程
pthread_cond_signal唤醒等待该条件的某个线程,pthread_cond_broadcast唤醒等待该条件的所有线程。

int pthread_cond_signal (pthread_cond_t *__cond);
int pthread_cond_broadcast (pthread_cond_t *__cond)


来一个例子,主线程启动4个线程,每个线程有一个参数i(i=生成顺序),无论线程的启动顺序如何,执行顺序只能为,线程0、线程1、线程2、线程3。

#include 
#include 
#include 
#include 
#include 
#define DEBUG 1

int num=0;
pthread_mutex_t mylock=PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t qready=PTHREAD_COND_INITIALIZER;
void * thread_func(void *arg)
{
  int i=(int)arg; 
  int ret;
  sleep(5-i);//线程睡眠,然最先生成的线程,最后苏醒
  pthread_mutex_lock(&mylock);//调用pthread_cond_wait前,必须获得互斥锁
  while(i!=num)
  {
#ifdef DEBUG
    printf("thread %d waiting\n",i);
#endif
    ret=pthread_cond_wait(&qready,&mylock);//该函数把线程放入等待条件的线程列表,然后对互斥锁进行解锁,这两部都是原子操作。并且在pthread_cond_wait返回时,互斥量再次锁住。
    if(ret==0)
    {
#ifdef DEBUG
      printf("thread %d wait success\n",i);
#endif
    }else
    {
#ifdef DEBUG
      printf("thread %d wait failed:%s\n",i,strerror(ret));
#endif
    }
  }
  printf("thread %d is running \n",i);
  num++;
  pthread_mutex_unlock(&mylock);//解锁
  pthread_cond_broadcast(&qready);//唤醒等待该条件的所有线程
  return (void *)0;
}
int main(int argc, char** argv) {
  
  int i=0,err;
  pthread_t tid[4];
  void *tret;
  for(;i<4;i++)
  {
    err=pthread_create(&tid[i],NULL,thread_func,(void *)i);
    if(err!=0)
    {
      printf("thread_create error:%s\n",strerror(err));
      exit(-1);
    }
  }
  for (i = 0; i <4; i++)
  {
    err = pthread_join(tid[i], &tret);
    if (err != 0)
    {
      printf("can not join with thread %d:%s\n", i,strerror(err));
      exit(-1);
    }
  }
  return 0;
}


在非DEBUG模式,执行结果如图所示:
在DEBUG模式,执行结果如图所示:

在DEBUG模式可以看出,线程3先被唤醒,然后执行pthread_cond_wait(输出thread 3 waiting),此时在pthread_cond_wait中先解锁互斥量,然后进入等待状态。这是thread 2加锁互斥量成功,进入pthread_cond_wait(输出thread 2 waiting) ,同样解锁互斥量,然后进入等待状态。直到线程0,全局变量与线程参数i一致,满足条件,不进入条件等待,输出thread 0 is running。全局变量num执行加1操作,解锁互斥量,然后唤醒所有等待该条件的线程。thread 3 被唤醒,输出thread 3 wait success。但是不满足条件,再次执行pthread_cond_wait。如此执行下去,满足条件的线程执行,不满足条件的线程等待。


推荐阅读
  • 本文介绍了Python高级网络编程及TCP/IP协议簇的OSI七层模型。首先简单介绍了七层模型的各层及其封装解封装过程。然后讨论了程序开发中涉及到的网络通信内容,主要包括TCP协议、UDP协议和IPV4协议。最后还介绍了socket编程、聊天socket实现、远程执行命令、上传文件、socketserver及其源码分析等相关内容。 ... [详细]
  • Linux服务器密码过期策略、登录次数限制、私钥登录等配置方法
    本文介绍了在Linux服务器上进行密码过期策略、登录次数限制、私钥登录等配置的方法。通过修改配置文件中的参数,可以设置密码的有效期、最小间隔时间、最小长度,并在密码过期前进行提示。同时还介绍了如何进行公钥登录和修改默认账户用户名的操作。详细步骤和注意事项可参考本文内容。 ... [详细]
  • 本文介绍了在Hibernate配置lazy=false时无法加载数据的问题,通过采用OpenSessionInView模式和修改数据库服务器版本解决了该问题。详细描述了问题的出现和解决过程,包括运行环境和数据库的配置信息。 ... [详细]
  • 树莓派Linux基础(一):查看文件系统的命令行操作
    本文介绍了在树莓派上通过SSH服务使用命令行查看文件系统的操作,包括cd命令用于变更目录、pwd命令用于显示当前目录位置、ls命令用于显示文件和目录列表。详细讲解了这些命令的使用方法和注意事项。 ... [详细]
  • Metasploit攻击渗透实践
    本文介绍了Metasploit攻击渗透实践的内容和要求,包括主动攻击、针对浏览器和客户端的攻击,以及成功应用辅助模块的实践过程。其中涉及使用Hydra在不知道密码的情况下攻击metsploit2靶机获取密码,以及攻击浏览器中的tomcat服务的具体步骤。同时还讲解了爆破密码的方法和设置攻击目标主机的相关参数。 ... [详细]
  • Python语法上的区别及注意事项
    本文介绍了Python2x和Python3x在语法上的区别,包括print语句的变化、除法运算结果的不同、raw_input函数的替代、class写法的变化等。同时还介绍了Python脚本的解释程序的指定方法,以及在不同版本的Python中如何执行脚本。对于想要学习Python的人来说,本文提供了一些注意事项和技巧。 ... [详细]
  • 本文介绍了Oracle数据库中tnsnames.ora文件的作用和配置方法。tnsnames.ora文件在数据库启动过程中会被读取,用于解析LOCAL_LISTENER,并且与侦听无关。文章还提供了配置LOCAL_LISTENER和1522端口的示例,并展示了listener.ora文件的内容。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • 本文介绍了在Linux下安装Perl的步骤,并提供了一个简单的Perl程序示例。同时,还展示了运行该程序的结果。 ... [详细]
  • 本文介绍了在Mac上搭建php环境后无法使用localhost连接mysql的问题,并通过将localhost替换为127.0.0.1或本机IP解决了该问题。文章解释了localhost和127.0.0.1的区别,指出了使用socket方式连接导致连接失败的原因。此外,还提供了相关链接供读者深入了解。 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • Webmin远程命令执行漏洞复现及防护方法
    本文介绍了Webmin远程命令执行漏洞CVE-2019-15107的漏洞详情和复现方法,同时提供了防护方法。漏洞存在于Webmin的找回密码页面中,攻击者无需权限即可注入命令并执行任意系统命令。文章还提供了相关参考链接和搭建靶场的步骤。此外,还指出了参考链接中的数据包不准确的问题,并解释了漏洞触发的条件。最后,给出了防护方法以避免受到该漏洞的攻击。 ... [详细]
  • Linux磁盘的分区、格式化的观察和操作步骤
    本文介绍了如何观察Linux磁盘的分区状态,使用lsblk命令列出系统上的所有磁盘列表,并解释了列表中各个字段的含义。同时,还介绍了使用parted命令列出磁盘的分区表类型和分区信息的方法。在进行磁盘分区操作时,根据分区表类型选择使用fdisk或gdisk命令,并提供了具体的分区步骤。通过本文,读者可以了解到Linux磁盘分区和格式化的基本知识和操作步骤。 ... [详细]
  • 本文介绍了Linux系统中正则表达式的基础知识,包括正则表达式的简介、字符分类、普通字符和元字符的区别,以及在学习过程中需要注意的事项。同时提醒读者要注意正则表达式与通配符的区别,并给出了使用正则表达式时的一些建议。本文适合初学者了解Linux系统中的正则表达式,并提供了学习的参考资料。 ... [详细]
author-avatar
php辉子
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有