热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

开发笔记:Spark之RDD

本文由编程笔记#小编为大家整理,主要介绍了Spark之RDD相关的知识,希望对你有一定的参考价值。一、什么是RDDRDD(ResilientDist
本文由编程笔记#小编为大家整理,主要介绍了Spark之RDD相关的知识,希望对你有一定的参考价值。



一、什么是RDD

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。


1.1 RDD属性

(1)Partition

即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的集群的CPU Core的总数目。

(2)一个计算每个分区的函数。

Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

(3)RDD之间的依赖关系。

RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

(4)一个Partitioner,即RDD的分片函数。控制分区数和分区策略

当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。

(5)每个数据分区的地址列表

存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。


1.2 RDD特点

RDD是一种分布式内存抽象。RDD限制应用执行批量写,这样有利于实现有效的容错。RDD可以使用Lineage恢复分区,基本没有检查点开销,失败时只需要重新计算丢失的RDD分区,就可以在不同节点上并行执行,不需要roll back这个程序。

RDD还支持备份任务,来处理落后的任务(运行很慢的节点)

RDD的批量操作是根据数据存放的位置来调度任务,尽量减少数据的传输,从而提高性能

RDD的扫描操作,如果内存不足以缓存整个RDD,就进行部分缓存,将容乃不下的分区存储大磁盘RDD支持粗粒度和细粒度的读操作。RDD上的很多函数操作(如count和collect等)都是批量读操作,即扫描整个数据集,可以将任务分配到距离数据最近的节点上。同时,RDD也支持细粒度操作,即在哈希或范围分区的RDD上执行关键字查找。


1.3 WordCount粗图解RDD

技术分享图片

技术分享图片


二、RDD的创建方式

2.1 通过读取文件生成


val file= sc.textFile("/spark/hello.txt")


2.2 通过并行化的方式创建


scala> val array = Array(1,2,3,4,5)
array: Array[Int]
= Array(1, 2, 3, 4, 5)
scala
> val rdd = sc.parallelize(array)
rdd: org.apache.spark.rdd.RDD[Int]
= ParallelCollectionRDD[27] at parallelize at :26
scala
>


2.3 其他

读取数据库、或者通过其他RDD转换而来


三、RDD算子

算子是RDD中定义的函数,可以对RDD中的数据进行转换和操作。

技术分享图片

运行:在Spark数据输入形成(这里可能并不准确)RDD后便可以通过变换算子,如fliter等,对数据进行操作并将RDD转化为新的RDD,通过Action算子,触发Spark提交作业。如果数据需要复用,可以通过Cache算子,将数据缓存到内存。

RDD支持两类算子:


3.1 Transformation算子

主要做的是就是将一个已有的RDD生成另外一个RDD。Transformation具有lazy特性(延迟加载)。Transformation算子的代码不会真正被执行。只有当我们的程序里面遇到一个action算子的时候,代码才会真正的被执行。这种设计让Spark更加有效率地运行。在Transformations算子中再将数据类型维度细分为:Value数据类型和Key-Value对数据类型的Transformations算子。Value型数据的算子封装在RDD类中可以直接使用,Key-Value对数据类型的算子封装于PairRDDFunctions类中,用户需要引入importorg.apache.spark.SparkContext._才能够使用。进行这样的细分是由于不同的数据类型处理思想不太一样,同时有些算子是不同的。

常用的Transformation算子:

























转换算子说明
map(func)返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成
filter(func)返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成
flatMap(func)类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)
mapPartitions(func)类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]

 


3.2 Action算子

本质上在Action算子中通过SparkContext执行提交作业的runJob操作,触发了RDDDAG的执行。

常用的Action算子:

























Action算子说明
reduce(func)通过func函数聚集RDD中的所有元素,这个功能必须是课交换且可并联的
collect()在驱动程序中,以数组的形式返回数据集的所有元素
foreach()在数据集的每一个元素上,运行函数func进行更新
take()返回一个由数据集的前n个元素组成的数组

四、例程

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object SparkWordCountWithScala {
def main(args: Array[String]): Unit
= {
val conf
= new SparkConf()
/**
* 如果这个参数不设置,默认认为你运行的是集群模式
* 如果设置成local代表运行的是local模式
*/
conf.setMaster(
"local")
//设置任务名
conf.setAppName("WordCount")
//创建SparkCore的程序入口
val sc = new SparkContext(conf)
//读取文件 生成RDD
val file: RDD[String] = sc.textFile("E:\\hello.txt")
//把每一行数据按照,分割
val word: RDD[String] = file.flatMap(_.split(","))
//让每一个单词都出现一次
val wordOne: RDD[(String, Int)] = word.map((_,1))
//单词计数
val wordCount: RDD[(String, Int)] = wordOne.reduceByKey(_+_)
//按照单词出现的次数 降序排序
val sortRdd: RDD[(String, Int)] = wordCount.sortBy(tuple => tuple._2,false)
//将最终的结果进行保存
sortRdd.saveAsTextFile("E:\\result")
sc.stop()
}

 


五、宽依赖、窄依赖

5.1 RDD依赖

由于RDD是粗粒度的操作数据集,每个Transformation操作都会生成一个新的RDD,所以RDD之间就会形成类似流水线的前后依赖关系;RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。如图所示显示了RDD之间的依赖关系。

技术分享图片

从图中可知:

窄依赖:是指每个父RDD的一个Partition最多被子RDD的一个Partition所使用,例如map、filter、union等操作都会产生窄依赖;(独生子女)

宽依赖:是指一个父RDD的Partition会被多个子RDD的Partition所使用,例如groupByKey、reduceByKey、sortByKey等操作都会产生宽依赖;(超生)

需要特别说明的是对join操作有两种情况:

(1)图中左半部分join:如果两个RDD在进行join操作时,一个RDD的partition仅仅和另一个RDD中已知个数的Partition进行join,那么这种类型的join操作就是窄依赖,例如图1中左半部分的join操作(join with inputs co-partitioned);

(2)图中右半部分join:其它情况的join操作就是宽依赖,例如图1中右半部分的join操作(join with inputs not co-partitioned),由于是需要父RDD的所有partition进行join的转换,这就涉及到了shuffle,因此这种类型的join操作也是宽依赖。


5.2 RDD 依赖关系下的数据流

技术分享图片

在spark中,会根据RDD之间的依赖关系将DAG图(有向无环图)划分为不同的阶段,对于窄依赖,由于partition依赖关系的确定性,partition的转换处理就可以在同一个线程里完成,窄依赖就被spark划分到同一个stage中,而对于宽依赖,只能等父RDD shuffle处理完成后,下一个stage才能开始接下来的计算。

因此spark划分stage的整体思路是:从后往前推,遇到宽依赖就断开,划分为一个stage;遇到窄依赖就将这个RDD加入该stage中。因此在图2中RDD C,RDD D,RDD E,RDDF被构建在一个stage中,RDD A被构建在一个单独的Stage中,而RDD B和RDD G又被构建在同一个stage中。

在spark中,Task的类型分为2种:ShuffleMapTaskResultTask

简单来说,DAG的最后一个阶段会为每个结果的partition生成一个ResultTask,即每个Stage里面的Task的数量是由该Stage中最后一个RDD的Partition的数量所决定的!而其余所有阶段都会生成ShuffleMapTask;之所以称之为ShuffleMapTask是因为它需要将自己的计算结果通过shuffle到下一个stage中;也就是说上图中的stage1和stage2相当于mapreduce中的Mapper,而ResultTask所代表的stage3就相当于mapreduce中的reducer。

在之前动手操作了一个wordcount程序,因此可知,Hadoop中MapReduce操作中的Mapper和Reducer在spark中的基本等量算子是map和reduceByKey;不过区别在于:Hadoop中的MapReduce天生就是排序的;而reduceByKey只是根据Key进行reduce,但spark除了这两个算子还有其他的算子;因此从这个意义上来说,Spark比Hadoop的计算算子更为丰富。


推荐阅读
  • 一、Hadoop来历Hadoop的思想来源于Google在做搜索引擎的时候出现一个很大的问题就是这么多网页我如何才能以最快的速度来搜索到,由于这个问题Google发明 ... [详细]
  • 本文介绍了数据库的存储结构及其重要性,强调了关系数据库范例中将逻辑存储与物理存储分开的必要性。通过逻辑结构和物理结构的分离,可以实现对物理存储的重新组织和数据库的迁移,而应用程序不会察觉到任何更改。文章还展示了Oracle数据库的逻辑结构和物理结构,并介绍了表空间的概念和作用。 ... [详细]
  • 本文介绍了Java工具类库Hutool,该工具包封装了对文件、流、加密解密、转码、正则、线程、XML等JDK方法的封装,并提供了各种Util工具类。同时,还介绍了Hutool的组件,包括动态代理、布隆过滤、缓存、定时任务等功能。该工具包可以简化Java代码,提高开发效率。 ... [详细]
  • eclipse学习(第三章:ssh中的Hibernate)——11.Hibernate的缓存(2级缓存,get和load)
    本文介绍了eclipse学习中的第三章内容,主要讲解了ssh中的Hibernate的缓存,包括2级缓存和get方法、load方法的区别。文章还涉及了项目实践和相关知识点的讲解。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 1,关于死锁的理解死锁,我们可以简单的理解为是两个线程同时使用同一资源,两个线程又得不到相应的资源而造成永无相互等待的情况。 2,模拟死锁背景介绍:我们创建一个朋友 ... [详细]
  • 海马s5近光灯能否直接更换为H7?
    本文主要介绍了海马s5车型的近光灯是否可以直接更换为H7灯泡,并提供了完整的教程下载地址。此外,还详细讲解了DSP功能函数中的数据拷贝、数据填充和浮点数转换为定点数的相关内容。 ... [详细]
  • GreenDAO快速入门
    前言之前在自己做项目的时候,用到了GreenDAO数据库,其实对于数据库辅助工具库从OrmLite,到litePal再到GreenDAO,总是在不停的切换,但是没有真正去了解他们的 ... [详细]
  • 本文介绍了使用Spark实现低配版高斯朴素贝叶斯模型的原因和原理。随着数据量的增大,单机上运行高斯朴素贝叶斯模型会变得很慢,因此考虑使用Spark来加速运行。然而,Spark的MLlib并没有实现高斯朴素贝叶斯模型,因此需要自己动手实现。文章还介绍了朴素贝叶斯的原理和公式,并对具有多个特征和类别的模型进行了讨论。最后,作者总结了实现低配版高斯朴素贝叶斯模型的步骤。 ... [详细]
  • 本文介绍了在Android开发中使用软引用和弱引用的应用。如果一个对象只具有软引用,那么只有在内存不够的情况下才会被回收,可以用来实现内存敏感的高速缓存;而如果一个对象只具有弱引用,不管内存是否足够,都会被垃圾回收器回收。软引用和弱引用还可以与引用队列联合使用,当被引用的对象被回收时,会将引用加入到关联的引用队列中。软引用和弱引用的根本区别在于生命周期的长短,弱引用的对象可能随时被回收,而软引用的对象只有在内存不够时才会被回收。 ... [详细]
  • DSP中cmd文件的命令文件组成及其作用
    本文介绍了DSP中cmd文件的命令文件的组成和作用,包括链接器配置文件的存放链接器配置信息、命令文件的组成、MEMORY和SECTIONS两个伪指令的使用、CMD分配ROM和RAM空间的目的以及MEMORY指定芯片的ROM和RAM大小和划分区间的方法。同时强调了根据不同芯片进行修改的必要性,以适应不同芯片的存储用户程序的需求。 ... [详细]
  • 本文介绍了如何使用php限制数据库插入的条数并显示每次插入数据库之间的数据数目,以及避免重复提交的方法。同时还介绍了如何限制某一个数据库用户的并发连接数,以及设置数据库的连接数和连接超时时间的方法。最后提供了一些关于浏览器在线用户数和数据库连接数量比例的参考值。 ... [详细]
  • Oracle seg,V$TEMPSEG_USAGE与Oracle排序的关系及使用方法
    本文介绍了Oracle seg,V$TEMPSEG_USAGE与Oracle排序之间的关系,V$TEMPSEG_USAGE是V_$SORT_USAGE的同义词,通过查询dba_objects和dba_synonyms视图可以了解到它们的详细信息。同时,还探讨了V$TEMPSEG_USAGE的使用方法。 ... [详细]
  • Activiti7流程定义开发笔记
    本文介绍了Activiti7流程定义的开发笔记,包括流程定义的概念、使用activiti-explorer和activiti-eclipse-designer进行建模的方式,以及生成流程图的方法。还介绍了流程定义部署的概念和步骤,包括将bpmn和png文件添加部署到activiti数据库中的方法,以及使用ZIP包进行部署的方式。同时还提到了activiti.cfg.xml文件的作用。 ... [详细]
  • 全面介绍Windows内存管理机制及C++内存分配实例(四):内存映射文件
    本文旨在全面介绍Windows内存管理机制及C++内存分配实例中的内存映射文件。通过对内存映射文件的使用场合和与虚拟内存的区别进行解析,帮助读者更好地理解操作系统的内存管理机制。同时,本文还提供了相关章节的链接,方便读者深入学习Windows内存管理及C++内存分配实例的其他内容。 ... [详细]
author-avatar
贺bujak_491
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有