热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

基于c语言中调试工具的用法汇总(不包含gdb)

本篇文章是对c语言中调试工具的用法进行了汇总,需要的朋友参考下

是不是只有编译的时候才知道程序写了错误?有没有在未编译的时候就让机器帮你检查错误的工具呢?
答案是:有!!

splint工具.用一个最简单的HELLO WORLD来表述:
=====================================

代码如下:

/*错误很明显*/
#include

int main(void)
{
   print("hello world\n", s);
   return
}


-----------------------------------------------------
casio$ splint -strict foo.c
Splint 3.1.1 --- 03 Nov 2006

foo.c: (in function main)
foo.c:5:2: Unrecognized identifier: print <-------找到print不是printf
Identifier used in code has not been declared. (Use -unrecog to inhibit
warning)
foo.c:5:25: Unrecognized identifier: s <-------未定义变量s
foo.c:5:2: Statement has no effect (possible undected modification through call
to unconstrained function print): print("hello wor... <---------不存在prinf函数
Statement has no visible effect --- no values are modified. It may modify
something through a call to an unconstrained function. (Use -noeffectuncon to
inhibit warning)
foo.c:7:2: Parse Error. (For help on parse errors, see splint -help <------对应return语法错误
parseerrors.)
*** Cannot continue.

=============================================

cxref

cxref程序分析C源代码并且生成一个交叉引用。他显示了每一个符号在程序中何处被提到。他使用标记星号的每一个符号定义位置生成一个排序列表,如下所示:

SYMBOL FILE FUNCTION LINE
BASENID prog.c — *12 *96 124 126 146 156 166
BINSIZE prog.c — *30 197 198 199 206
BUFMAX prog.c — *44 45 90
BUFSIZ /usr/include/stdio.h — *4
EOF /usr/include/stdio.h — *27
argc prog.c — 36
prog.c main *37 61 81
argv prog.c — 36
prog.c main *38 61
calldata prog.c — *5
prog.c main 64 188
calls prog.c — *19
prog.c main 54

在作者的机子上,前面的输入在程序的源码目录中使用下面的命令来生成的:

$ cxref *.c *.h

但是实际的语法因为版本的不同而不同。查看我们系统的文档或是man手册可以得到更多的信息。

cflow <使用时输入cflow *.c就可以了.可以马上搞清除什么函数调用了什么.>

cflow程序会输出一个函数调用树,这是一个显示函数调用关系的图表。这对于查看程序结构来了解他是如何操作的以及了解对于一个函数有哪些影响是十分有用的。一些版本的cflow可以同时作用于目标文件与源代码。查看手册页我们可以了解更为详细的操作。

下面是由一个cflow版本(cflow-2.0)所获得的例子输出,这个版本的cflow版本是由Marty Leisner维护的,并且可以网上得到。

1 file_ungetc {prcc.c 997}
2 main {prcc.c 70}
3 getopt {}
4 show_all_lists {prcc.c 1070}
5 display_list {prcc.c 1056}
6 printf {}
7 exit {}
8 exit {}
9 usage {prcc.c 59}
10 fprintf {}
11 exit {}

从这个输出中我们可以看到main函数调用show_all_lists,而show_all_lists调用display_list,display_list本身调用printf。

这个版本cflow的一个选项就是-i,这会生成一个反转的流程图。对于每一个函数,cflow列出调用他的其他函数。这听起来有些复杂,但是实际上并不是这样。下面是一个例子。

19 display_list {prcc.c 1056}
20 show_all_lists {prcc.c 1070}
21 exit {}
22 main {prcc.c 70}
23 show_all_lists {prcc.c 1070}
24 usage {prcc.c 59}
...
74 printf {}
75 display_list {prcc.c 1056}
76 maketag {prcc.c 487}
77 show_all_lists {prcc.c 1070}
78 main {prcc.c 70}
...
99 usage {prcc.c 59}
100 main {prcc.c 70}

例如,这告诉我们调用exit的函数有main,show_all_lists与usage。

使用prof/gprof执行性能测试

当我们试着追踪一个程序的性能问题时一个十分有用的技术就是执行性能测试(execution profiling)。通常被特殊的编译器选项以及辅助程序所支持,一个程序的性能显示他在哪里花费时间。

prof程序(以及其GNU版本gprof)会由性能测试程序运行时所生成的执行追踪文件中输出报告。一个可执行的性能测试是由指定-p选项(对prof)或是-pg选项(对gprof)所生成的:

$ cc -pg -o program program.c

这个程序是使用一个特殊版本的C库进行链接的并且被修改来包含监视代码。对于不同的系统结果也许不同,但是通常是由安排频繁被中断的程序以及记录执行位置来做到的。监视数据被写入当前目录中的一个文件,mon.out(对于gprof为gmon.out)。

$ ./program
$ ls -ls
2 -rw-r--r-- 1 neil users 1294 Feb 4 11:48 gmon.out

然后用命令:gprof ./program可以查看到下面的报告

prof/gprof程序读取这些监视数据并且生成一个报告。查看其手册页可以详细了解其程序选项。下面以gprof输出作为一个例子:

cumulative self self total
time seconds seconds calls ms/call ms/call name
18.5 0.10 0.10 8664 0.01 0.03 _doscan [4]
18.5 0.20 0.10 mcount (60)
14.8 0.28 0.08 43320 0.00 0.00 _number [5]
9.3 0.33 0.05 8664 0.01 0.01 _format_arg [6]
7.4 0.37 0.04 112632 0.00 0.00 _ungetc [8]
7.4 0.41 0.04 8757 0.00 0.00 _memccpy [9]
7.4 0.45 0.04 1 40.00 390.02 _main [2]
3.7 0.47 0.02 53 0.38 0.38 _read [12]
3.7 0.49 0.02 w4str [10]
1.9 0.50 0.01 26034 0.00 0.00 _strlen [16]
1.9 0.51 0.01 8664 0.00 0.00 strncmp [17]

内存调试

富含bug而且难于跟踪调试的一个区域就是动态内存分配。如果我们编译一个使用malloc与free来分配内存的程序,很重要的一点就是我们要跟踪我们所分配的内存块,并且保证不要使用已经释放的内存块。

通常,内存是由malloc分配并且赋给一个指针变量的。如果指针变量被修改了,而又没有其他的指针来指向这个内存块,他就会变为不可访问的内存块。这就是一个内存泄露,而且会使得我们程序尺寸变大。如果我们泄露了大量的内存,那么我们的系统就会变慢并且会最终用尽内存。

如 果我们在超出一个分配的内存块的结束部分(或是在一个内存块的开始部分)写入数据,我们很有可能会破坏malloc库来跟踪分配所用的数据结构。在这种情 况下,在将来的某个时刻,调用malloc,或者甚至是free,就会引起段错误,而我们的程序就会崩溃。跟踪错误发生的精确点是非常困难的,因为很可能 他在引起崩溃的事件发生以前很一段时间就已经发生了。

不必奇怪的是,有一些工具,商业或是自由的,可以有助于处理这两种问题类型。例如,有许多不同的malloc与free版本,其中的一些包含额外的代码在分配与回收上进行检测尝试检测一个内存块被释放两次或是其他一些滥用类型的情况。

ElectricFence

ElectricFence 库是由Bruce Perens开发的,并且在一些Linux发行版本中作为一个可选的组件来提供,例如RedHat,而且已经可以在网络上获得。他尝试使用Linux的虚 拟内存工具来保护malloc与free所使用的内存,从而在内存被破坏时终止程序。

试验--ElectricFence

下面的程序,efence.c,使用malloc分配一个内存块,然后在超出块结束处写入数据。让我们看一下会发生什么情况。

代码如下:

#include
#include
int main()
{
   char *ptr = (char *) malloc(1024);
   ptr[0] = 0;
   /* Now write beyond the block */
   ptr[1024] = 0;/*写非法*/
   exit(0);
}

当我们编译运行这个程序时,我们并不会看到进一步的行为。然而,似乎malloc所分配的内存区域有一些问题,而我们实际上已经遇到了麻烦。

$ cc -o efence efence.c
$ ./efence
$

然而,如果我们使用ElectricFence库,libefence.a来链接这个程序,我们就会得到一个即时的响应。

$ cc -o efence efence.c -lefence
$ ./efence
Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens
Segmentation fault
$

在调试器下运行可以定位这个问题:

$ cc -g -o efence efence.c -lefence
$ gdb efence
(gdb) run
Starting program: /home/neil/BLP3/chapter10/efence
[New Thread 1024 (LWP 1869)]
Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens
Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 1024 (LWP 1869)]
0x080484ad in main () at efence.c:10
10 ptr[1024] = 0;
(gdb)

工作原理

Electric替换malloc并且将函数与计算机处理器的虚拟内存特性相关联来阻止非法的内存访问。当这样的访问发生时,就会抛出一个段错误信息从而可以终止程序。

valgrind

valgrind是一个可以检测我们已经讨论过的许多问题的工具。事实上,他可以检测数据访问错误与内存泄露。也许他并没有被包含在我们的Linux发行版本中,但是我们可以在http://developer.kde.org/~sewardj处得到。

程序并不需要使用valgrind重新编译,而我们甚至可以调用一个正在运行的程序的内存访问。他很值得一看,他已经用在主要的开发上,包含KDE版本3。

试验--valgrind

下面的程序,checker.c,分配一些内存,读取超过那块内存限制的位置,在其结束处之外写入数据,然后使其不能访问。

代码如下:

#include
#include
int main(void)
{
   char *ptr = (char *) malloc(1024);
   char ch;
   /* Uninitialized read */
   ch = ptr[1024];/*读非法*/
   /* Write beyond the block */
   ptr[1024] = 0;/*写非法*/
   /* Orphan the block */
   ptr = 0;/*野指针*/
   exit(0);
}

要使用valgrind,我们只需要简单的运行valgrind命令,传递我们希望检测的选项,其后是使用其参数运行的程序。

当我们使用valgrind来运行我们的程序时,我们可以看到诊断出许多问题:

$ valgrind --leak-check=yes -v ./checker
==3436== valgrind-1.0.4, a memory error detector for x86 GNU/Linux.
==3436== Copyright (C) 2000-2002, and GNU GPL'd, by Julian Seward.
==3436== Estimated CPU clock rate is 452 MHz
==3436== For more details, rerun with: -v
==3436==
==3436== Invalid read of size 1
==3436== at 0x8048397: main (checker.c:10)
==3436== by 0x402574F2: __libc_start_main (in /lib/libc.so.6)
==3436== by 0x80482D1: exit@@GLIBC_2.0 (in /home/neil/BLP3/chapter10/checker)
==3436== Address 0x42AD1424 is 0 bytes after a block of size 1024 alloc'd
==3436== at 0x4003CA75: malloc (vg_clientfuncs.c:100)
==3436== by 0x8048389: main (checker.c:6)
==3436== by 0x402574F2: __libc_start_main (in /lib/libc.so.6)
==3436== by 0x80482D1: exit@@GLIBC_2.0 (in /home/neil/BLP3/chapter10/checker)
==3436==
==3436== Invalid write of size 1
==3436== at 0x80483A4: main (checker.c:13)
==3436== by 0x402574F2: __libc_start_main (in /lib/libc.so.6)
==3436== by 0x80482D1: exit@@GLIBC_2.0 (in /home/neil/BLP3/chapter10/checker)
==3436== Address 0x42AD1424 is 0 bytes after a block of size 1024 alloc'd
==3436== at 0x4003CA75: malloc (vg_clientfuncs.c:100)
==3436== by 0x8048389: main (checker.c:6)
==3436== by 0x402574F2: __libc_start_main (in /lib/libc.so.6)
==3436== by 0x80482D1: exit@@GLIBC_2.0 (in /home/neil/BLP3/chapter10/checker)
==3436==
==3436== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)
==3436== malloc/free: in use at exit: 1024 bytes in 1 blocks.
==3436== malloc/free: 1 allocs, 0 frees, 1024 bytes allocated.
==3436== For counts of detected errors, rerun with: -v
==3436== searching for pointers to 1 not-freed blocks.
==3436== checked 3468724 bytes.
==3436==
==3436== definitely lost: 1024 bytes in 1 blocks.
==3436== possibly lost: 0 bytes in 0 blocks.
==3436== still reachable: 0 bytes in 0 blocks.
==3436==
==3436== 1024 bytes in 1 blocks are definitely lost in loss record 1 of 1
==3436== at 0x4003CA75: malloc (vg_clientfuncs.c:100)
==3436== by 0x8048389: main (checker.c:6)
==3436== by 0x402574F2: __libc_start_main (in /lib/libc.so.6)
==3436== by 0x80482D1: exit@@GLIBC_2.0 (in /home/neil/BLP3/chapter10/checker)
==3436==
==3436== LEAK SUMMARY:
==3436== definitely lost: 1024 bytes in 1 blocks.
==3436== possibly lost: 0 bytes in 0 blocks.
==3436== still reachable: 0 bytes in 0 blocks.
==3436== Reachable blocks (those to which a pointer was found) are not shown.
==3436== To see them, rerun with: --show-reachable=yes
==3436== $

这里我们可以看到错误的读取与写入已经被捕获,而所关注的内存块与他们被分配的位置相关联。我们可以使用调试器在出错点断开程序。

valgrind 有许多选项,包含特定的错误类型表达式与内存泄露检测。要检测我们的例子泄露,我们必须使用一个传递给valgrind的选项。当程序结束时要检测内存泄 露,我们需要指定 --leak-check=yes。我们可以使用valgrind --help得到一个选项列表。

工作原理

我们的程序在valgrind的控制下执行,这会检测我们程序所执行的各种动作,并且执行许多检测,包括内存访问。如果程序访问一个已分配的内存块并且访问 是非法的,valgrind就会输出一条信息。在程序结束时,一个垃圾收集例程就会运行来检测是否在存在分配的内存块没有被释放。这些孤儿内存也会被报告。


推荐阅读
  • 在Docker中,将主机目录挂载到容器中作为volume使用时,常常会遇到文件权限问题。这是因为容器内外的UID不同所导致的。本文介绍了解决这个问题的方法,包括使用gosu和suexec工具以及在Dockerfile中配置volume的权限。通过这些方法,可以避免在使用Docker时出现无写权限的情况。 ... [详细]
  • 本文介绍了Python高级网络编程及TCP/IP协议簇的OSI七层模型。首先简单介绍了七层模型的各层及其封装解封装过程。然后讨论了程序开发中涉及到的网络通信内容,主要包括TCP协议、UDP协议和IPV4协议。最后还介绍了socket编程、聊天socket实现、远程执行命令、上传文件、socketserver及其源码分析等相关内容。 ... [详细]
  • Centos7.6安装Gitlab教程及注意事项
    本文介绍了在Centos7.6系统下安装Gitlab的详细教程,并提供了一些注意事项。教程包括查看系统版本、安装必要的软件包、配置防火墙等步骤。同时,还强调了使用阿里云服务器时的特殊配置需求,以及建议至少4GB的可用RAM来运行GitLab。 ... [详细]
  • 本文介绍了在Hibernate配置lazy=false时无法加载数据的问题,通过采用OpenSessionInView模式和修改数据库服务器版本解决了该问题。详细描述了问题的出现和解决过程,包括运行环境和数据库的配置信息。 ... [详细]
  • 树莓派Linux基础(一):查看文件系统的命令行操作
    本文介绍了在树莓派上通过SSH服务使用命令行查看文件系统的操作,包括cd命令用于变更目录、pwd命令用于显示当前目录位置、ls命令用于显示文件和目录列表。详细讲解了这些命令的使用方法和注意事项。 ... [详细]
  • Metasploit攻击渗透实践
    本文介绍了Metasploit攻击渗透实践的内容和要求,包括主动攻击、针对浏览器和客户端的攻击,以及成功应用辅助模块的实践过程。其中涉及使用Hydra在不知道密码的情况下攻击metsploit2靶机获取密码,以及攻击浏览器中的tomcat服务的具体步骤。同时还讲解了爆破密码的方法和设置攻击目标主机的相关参数。 ... [详细]
  • Python语法上的区别及注意事项
    本文介绍了Python2x和Python3x在语法上的区别,包括print语句的变化、除法运算结果的不同、raw_input函数的替代、class写法的变化等。同时还介绍了Python脚本的解释程序的指定方法,以及在不同版本的Python中如何执行脚本。对于想要学习Python的人来说,本文提供了一些注意事项和技巧。 ... [详细]
  • 本文介绍了Oracle数据库中tnsnames.ora文件的作用和配置方法。tnsnames.ora文件在数据库启动过程中会被读取,用于解析LOCAL_LISTENER,并且与侦听无关。文章还提供了配置LOCAL_LISTENER和1522端口的示例,并展示了listener.ora文件的内容。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • 本文介绍了在Linux下安装Perl的步骤,并提供了一个简单的Perl程序示例。同时,还展示了运行该程序的结果。 ... [详细]
  • 本文介绍了在Mac上搭建php环境后无法使用localhost连接mysql的问题,并通过将localhost替换为127.0.0.1或本机IP解决了该问题。文章解释了localhost和127.0.0.1的区别,指出了使用socket方式连接导致连接失败的原因。此外,还提供了相关链接供读者深入了解。 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • Webmin远程命令执行漏洞复现及防护方法
    本文介绍了Webmin远程命令执行漏洞CVE-2019-15107的漏洞详情和复现方法,同时提供了防护方法。漏洞存在于Webmin的找回密码页面中,攻击者无需权限即可注入命令并执行任意系统命令。文章还提供了相关参考链接和搭建靶场的步骤。此外,还指出了参考链接中的数据包不准确的问题,并解释了漏洞触发的条件。最后,给出了防护方法以避免受到该漏洞的攻击。 ... [详细]
  • Linux磁盘的分区、格式化的观察和操作步骤
    本文介绍了如何观察Linux磁盘的分区状态,使用lsblk命令列出系统上的所有磁盘列表,并解释了列表中各个字段的含义。同时,还介绍了使用parted命令列出磁盘的分区表类型和分区信息的方法。在进行磁盘分区操作时,根据分区表类型选择使用fdisk或gdisk命令,并提供了具体的分区步骤。通过本文,读者可以了解到Linux磁盘分区和格式化的基本知识和操作步骤。 ... [详细]
author-avatar
QK丫头419QJ
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有