热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

关于机器学习:评估和选择最佳学习模型的一些指标总结

在评估模型时,尽管准确性是训练阶段模型评估和利用模型调整的重要指标,但它并不是模型评估的最佳指标,咱们能够应用几个评估指标来评估咱们的模型。

在评估模型时,尽管准确性是训练阶段模型评估和利用模型调整的重要指标,但它并不是模型评估的最佳指标,咱们能够应用几个评估指标来评估咱们的模型。

因为咱们用于构建大多数模型的数据是不均衡的,并且在对数据进行训练时模型可能会过拟合。在本文中,我将探讨和解释其中的一些办法,并给出应用 Python 代码的示例。

混同矩阵

对于分类模型应用混同矩阵是一个十分好的办法来评估咱们的模型。它对于可视化的了解预测后果是十分有用的,因为正和负的测试样本的数量都会显示进去。并且它提供了无关模型如何解释预测的信息。混同矩阵可用于二元和多项分类。它由四个矩阵组成:

#Import Libraries:
from random import random
from random import randint
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import roc_curve

#Fabricating variables:
#Creating values for FeNO with 3 classes:
FeNO_0 = np.random.normal(15,20, 1000)
FeNO_1 = np.random.normal(35,20, 1000)
FeNO_2 = np.random.normal(65, 20, 1000)

#Creating values for FEV1 with 3 classes:
FEV1_0 = np.random.normal(4.50, 1, 1000)
FEV1_1 = np.random.uniform(3.75, 1.2, 1000)
FEV1_2 = np.random.uniform(2.35, 1.2, 1000)

#Creating values for Bronco Dilation with 3 classes:
BD_0 = np.random.normal(150,49, 1000)
BD_1 = np.random.uniform(250,50,1000)
BD_2 = np.random.uniform(350, 50, 1000)

#Creating labels variable with two classes (1)Disease (0)No disease:
no_disease = np.zeros((1500,), dtype=int)
disease = np.ones((1500,), dtype=int)

#Concatenate classes into one variable:
FeNO = np.concatenate([FeNO_0, FeNO_1, FeNO_2])
FEV1 = np.concatenate([FEV1_0, FEV1_1, FEV1_2])
BD = np.concatenate([BD_0, BD_1, BD_2])
dx = np.concatenate([not_asma, asma])

#Create DataFrame:
df = pd.DataFrame()#Add variables to DataFrame:
df['FeNO'] = FeNO.tolist()
df['FEV1'] = FEV1.tolist()
df['BD'] = BD.tolist()
df['dx'] = dx.tolist()

#Create X and y:
X = df.drop('dx', axis=1)
y = df['dx']#Train and Test split:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

#Build the model:
logisticregression = LogisticRegression().fit(X_train, y_train)

#Print accuracy metrics:
print("training set score: %f" % logisticregression.score(X_train, y_train))
print("test set score: %f" % logisticregression.score(X_test, y_test))

当初咱们能够构建混同矩阵并查看咱们的模型了:

# Predicting labels from X_test data
y_pred = logisticregression.predict(X_test)

# Create the confusion matrix
cOnfmx= confusion_matrix(y_test, y_pred)
f, ax = plt.subplots(figsize = (8,8))
sns.heatmap(confmx, annot=True, fmt='.1f', ax = ax)
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Confusion Matrix')
plt.show();

能够看到,模型未能对42个标签[1]和57个标签[0]的进行分类。

下面的办法是二分类的状况,建设多分类的混同矩阵的步骤是类似的。

#Fabricating variables:
#Creating values for FeNO with 3 classes:
FeNO_0 = np.random.normal(15,20, 1000)
FeNO_1 = np.random.normal(35,20, 1000)
FeNO_2 = np.random.normal(65, 20, 1000)

#Creating values for FEV1 with 3 classes:
FEV1_0 = np.random.normal(4.50, 1, 1000)
FEV1_1 = np.random.normal(3.75, 1.2, 1000)
FEV1_2 = np.random.normal(2.35, 1.2, 1000)

#Creating values for Broncho Dilation with 3 classes:
BD_0 = np.random.normal(150,49, 1000)
BD_1 = np.random.normal(250,50,1000)
BD_2 = np.random.normal(350, 50, 1000)

#Creating labels variable with three classes: 
no_disease = np.zeros((1000,), dtype=int)
possible_disease = np.ones((1000,), dtype=int)
disease = np.full((1000,), 2, dtype=int)

#Concatenate classes into one variable:
FeNO = np.concatenate([FeNO_0, FeNO_1, FeNO_2])
FEV1 = np.concatenate([FEV1_0, FEV1_1, FEV1_2])
BD = np.concatenate([BD_0, BD_1, BD_2])
dx = np.concatenate([no_disease, possible_disease, disease])

#Create DataFrame:
df = pd.DataFrame()

#Add variables to DataFrame:
df['FeNO'] = FeNO.tolist()
df['FEV1'] = FEV1.tolist()
df['BD'] = BD.tolist()
df['dx'] = dx.tolist()

#Creating X and y:
X = df.drop('dx', axis=1)
y = df['dx']#Data split into train and test:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)#Fit Logistic Regression model:
logisticregression = LogisticRegression().fit(X_train, y_train)

#Evaluate Logistic Regression model:
print("training set score: %f" % logisticregression.score(X_train, y_train))
print("test set score: %f" % logisticregression.score(X_test, y_test))

当初咱们来创立混同矩阵

# Predicting labels from X_test data
y_pred = logisticregression.predict(X_test)

# Create the confusion matrix
cOnfmx= confusion_matrix(y_test, y_pred)
f, ax = plt.subplots(figsize = (8,8))
sns.heatmap(confmx, annot=True, fmt='.1f', ax = ax)
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Confusion Matrix')
plt.show();

通过观察混同矩阵,咱们能够看到标签[1]的错误率更高,因而是最难分类的。

评估指标

在机器学习中,有许多不同的指标用于评估分类器的性能。最罕用的是:

  • 准确性Accuracy:咱们的模型在预测后果方面有多好。此指标用于度量模型输入与指标后果的靠近水平(所有样本预测正确的比例)。
  • 精度Precision:咱们预测的正样本有多少是正确的?查准率(预测为正样本中,有多少理论为正样本,预测的正样本有多少是对的)
  • 召回Recall:咱们的样本中有多少是指标标签?查全率(有多少正样本被预测了,所有正样本中能预测对的有多少)
  • F1 Score:是查准率和查全率的加权平均值。

咱们还是应用后面示例中构建的数据和模型来构建混同矩阵。应用sklearn打印所需模型的评估指标是非常简单的,所以咱们这里间接应用现有的函数classification_report:

# Printing the model scores:
print(classification_report(y_test, y_pred))

能够看到,标签 [0] 的精度更高,标签 [1] 的 f1 分数更高。在二分类的混同矩阵中,咱们看到了标签 [1] 的谬误分类数据较少。

对于多标签分类

# Printing the model scores:
print(classification_report(y_test, y_pred))

通过混同矩阵,能够看到标签 [1] 是最难分类的,标签 [1] 的准确率、召回率和 f1 分数也是一样的。

ROC和AUC

ROC 曲线,是一种图形示意,它阐明了二元分类器零碎在其判断阈值变动时的性能。ROC 曲线下的面积通常用于掂量测试的有用性,其中更大的面积意味着更有用的测试。ROC 曲线显示了假阳性率 (FPR) 与真阳性率 (TPR) 的比照。

#Get the values of FPR and TPR:
fpr, tpr, thresholds = roc_curve(y_test,logisticregression.decision_function(X_test))
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
plt.title("roc_curve");

# find threshold closest to zero:
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10,
label="threshold zero", fill, c='k', mew=2)
plt.legend(loc=4)

PR(precision recall )曲线

在P-R曲线中,Precision为横坐标,Recall为纵坐标。在ROC曲线中曲线越凸向左上角越好,在P-R曲线中,曲线越凸向右上角越好。P-R曲线判断模型的好坏要依据具体情况具体分析,有的我的项目要求召回率较高、有的我的项目要求准确率较高。P-R曲线的绘制跟ROC曲线的绘制是一样的,在不同的阈值下失去不同的Precision、Recall,失去一系列的点,将它们在P-R图中绘制进去,并顺次连接起来就失去了P-R图。

PR 曲线只是一个图形,y 轴上有 Precision 值,x 轴上有 Recall 值。换句话说,PR 曲线在 y 轴上蕴含 TP/(TP+FN),在 x 轴上蕴含 TP/(TP+FP)。

ROC 曲线是蕴含 x 轴上的 Recall = TPR = TP/(TP+FN) 和 y 轴上的 FPR = FP/(FP+TN) 的图。ROC曲线并且不会事实假阳性率与假阴性率,而是绘制真阳性率与假阳性率。

PR 曲线通常在波及信息检索的问题中更为常见,不同场景对ROC和PRC偏好不一样,要依据理论状况区别对待。

#Get precision and recall thresholds:
precision, recall, thresholds = precision_recall_curve(y_test,logisticregression.decision_function(X_test))

# find threshold closest to zero:
close_zero = np.argmin(np.abs(thresholds))

#Plot curve:
plt.plot(precision[close_zero],     
         recall[close_zero], 
         'o', 
         markersize=10,
         label="threshold zero", 
         fill, 
         c='k', 
         mew=2)
plt.plot(precision, recall, label="precision recall curve")
plt.xlabel("precision")
plt.ylabel("recall")
plt.title("precision_recall_curve");
plt.legend(loc="best")

https://avoid.overfit.cn/post/decf6f5fade44ffa98554368173062b0

作者:Carla Martins


推荐阅读
  • 本文介绍了在Pygame中使用矩形对表面进行涂色的方法。通过查阅Pygame文档中的blit函数,可以了解到如何将一个表面的特定部分复制到另一个表面的指定位置上。具体的解决方法和参数说明在文中都有详细说明。 ... [详细]
  • 本文详细介绍了PHP中与URL处理相关的三个函数:http_build_query、parse_str和查询字符串的解析。通过示例和语法说明,讲解了这些函数的使用方法和作用,帮助读者更好地理解和应用。 ... [详细]
  • 本文介绍了Oracle数据库中tnsnames.ora文件的作用和配置方法。tnsnames.ora文件在数据库启动过程中会被读取,用于解析LOCAL_LISTENER,并且与侦听无关。文章还提供了配置LOCAL_LISTENER和1522端口的示例,并展示了listener.ora文件的内容。 ... [详细]
  • 本文介绍了多因子选股模型在实际中的构建步骤,包括风险源分析、因子筛选和体系构建,并进行了模拟实证回测。在风险源分析中,从宏观、行业、公司和特殊因素四个角度分析了影响资产价格的因素。具体包括宏观经济运行和宏经济政策对证券市场的影响,以及行业类型、行业生命周期和行业政策对股票价格的影响。 ... [详细]
  • 本文介绍了Hyperledger Fabric外部链码构建与运行的相关知识,包括在Hyperledger Fabric 2.0版本之前链码构建和运行的困难性,外部构建模式的实现原理以及外部构建和运行API的使用方法。通过本文的介绍,读者可以了解到如何利用外部构建和运行的方式来实现链码的构建和运行,并且不再受限于特定的语言和部署环境。 ... [详细]
  • 本文讨论了在openwrt-17.01版本中,mt7628设备上初始化启动时eth0的mac地址总是随机生成的问题。每次随机生成的eth0的mac地址都会写到/sys/class/net/eth0/address目录下,而openwrt-17.01原版的SDK会根据随机生成的eth0的mac地址再生成eth0.1、eth0.2等,生成后的mac地址会保存在/etc/config/network下。 ... [详细]
  • Givenasinglylinkedlist,returnarandomnode'svaluefromthelinkedlist.Eachnodemusthavethe s ... [详细]
  • 花瓣|目标值_Compose 动画边学边做夏日彩虹
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了Compose动画边学边做-夏日彩虹相关的知识,希望对你有一定的参考价值。引言Comp ... [详细]
  • 1.ArrayList是实现了基于动态数组的数据结构,LinkedList基于链表的数据结构。 2.对于随机访问get和set,ArrayList优于LinkedList,因为Ar ... [详细]
  • Python 可视化 | Seaborn5 分钟入门 (六)——heatmap 热力图
    微信公众号:「Python读财」如有问题或建议,请公众号留言Seaborn是基于matplotlib的Python可视化库。它提供了一个高级界面来绘制有吸引力的统计图形。Seabo ... [详细]
  • ffmpeg【百度百科】
    FFmpeg是一个开源免费跨平台的视频和音频流方案,属于自由软件,采用LGPL或GPL许可证(依据你选择的组件)。它提供了录 ... [详细]
  • 概述今天主要分享一个批量ssh免密脚本,仅供参考。需求管理端有多台服务器,维护几百台服务器的时候需配置ssh免密,但密码很多特殊字符,如果用expect是很难处理的,故python ... [详细]
  • 学习如何在AIX上实现Internet小型计算机系统接口(Internetsmallcomputersysteminterface,iSCSI)。文中循序渐进的过程将说明如 ... [详细]
  • 本文整理了Java中co.cask.cdap.proto.NamespaceConfig.getPrincipal()方法的一些代码示例,展示了Namesp ... [详细]
  • seaborn箱线图_Seaborn线图的数据可视化
    seaborn箱线图Hello,folks!Inthisarticle,wewillbetakingtheSeaborntutorialaheadandunderstandingt ... [详细]
author-avatar
大约在冬季1122_867
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有