热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

大数据开发生态圈之Apache

Hadoop概述Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力进行高速运算和存储。Ha

大数据开发生态圈之Apache Hadoop简介

Hadoop概述

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力进行高速运算和存储。
Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。
Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。

分布式存储

    在分布式存储系统中,分散在不同节点中的数据可能属于同一个文件,为了组织众多的文件,把文件可以放到不同的文件夹中,
文件夹可以一级一级的包含。我们把这种组织形式称为命名空间(namespace)。命名空间管理着整个服务器集群中的所有文件。

分布式计算

    把一个需要非常巨大的计算能力才能解决的问题分成许多小的部分,然后把这些部分分配给许多计算机进行处理,最后把这些计
算结果综合起来得到最终的结果。

Hadoop关联项目

大数据开发生态圈之Apache Hadoop简介

AmbariTM:基于web能够提供资源、监控、管理Hadoop集群的操作工具。
AvroTM:数据序列化系统。
HBaseTM:能支持结构化数据大表存储的可扩展的、分布式的数据库。
HiveTM:能够支持数据的汇总和临时查询的数据仓库基础框架。
MahoutTM:一个可扩展的机器学习和数据挖掘库。
PigTM:高级数据流语言和并行计算执行框架
SparkTM:一个快速和通用的计算Hadoop数据引擎。
TezTM:一个通用的数据流编程框架。
ZooKeeperTM:一个分布式应用的高性能协调的服务。

Hadoop版本

大数据开发生态圈之Apache Hadoop简介

大数据开发生态圈之Apache Hadoop简介

Hadoop的版本大致分为以下:
Apache
官方版本
Cloudera(CDH)
使用下载最多的版本,稳定,有商业支持,在Apache的基础上打上了一些补丁。推荐使用。
HortonWorks(HDP)
基于Apache的版本进行了集成。
MapR

Hadoop模块构成

Hadoop2包括4个模块

Hadoop Common
The common utilities that support the other Hadoop modules.
Hadoop Distributed File System(HDFSTM)
A distributed file system that provides high-throughput access to application data.
Hadoop Yarn
A framework for job scheduling and cluster resource management.
Hadoop MapReduce
A YARN-based system for parallel processing of large data sets.

Hadoop1和Hadoop2简介

Hadoop1
HDFS:Hadoop Distributed File System 分布式文件系统
MapReduce:分布式计算模型
Hadoop2
HDFS2: Hadoop Distributed File System 分布式文件系统
Yarn:资源管理平台,在上面运行分布式计算,典型的计算模型有
MapReduce、Storm、Spark等。

大数据开发生态圈之Apache Hadoop简介

详细可参考http://hadoop.apache.org


推荐阅读
  • 本文介绍了Python语言程序设计中文件和数据格式化的操作,包括使用np.savetext保存文本文件,对文本文件和二进制文件进行统一的操作步骤,以及使用Numpy模块进行数据可视化编程的指南。同时还提供了一些关于Python的测试题。 ... [详细]
  • 本文介绍了绕过WAF的XSS检测机制的方法,包括确定payload结构、测试和混淆。同时提出了一种构建XSS payload的方法,该payload与安全机制使用的正则表达式不匹配。通过清理用户输入、转义输出、使用文档对象模型(DOM)接收器和源、实施适当的跨域资源共享(CORS)策略和其他安全策略,可以有效阻止XSS漏洞。但是,WAF或自定义过滤器仍然被广泛使用来增加安全性。本文的方法可以绕过这种安全机制,构建与正则表达式不匹配的XSS payload。 ... [详细]
  • 本文分享了一个关于在C#中使用异步代码的问题,作者在控制台中运行时代码正常工作,但在Windows窗体中却无法正常工作。作者尝试搜索局域网上的主机,但在窗体中计数器没有减少。文章提供了相关的代码和解决思路。 ... [详细]
  • 本文介绍了如何使用php限制数据库插入的条数并显示每次插入数据库之间的数据数目,以及避免重复提交的方法。同时还介绍了如何限制某一个数据库用户的并发连接数,以及设置数据库的连接数和连接超时时间的方法。最后提供了一些关于浏览器在线用户数和数据库连接数量比例的参考值。 ... [详细]
  • Metasploit攻击渗透实践
    本文介绍了Metasploit攻击渗透实践的内容和要求,包括主动攻击、针对浏览器和客户端的攻击,以及成功应用辅助模块的实践过程。其中涉及使用Hydra在不知道密码的情况下攻击metsploit2靶机获取密码,以及攻击浏览器中的tomcat服务的具体步骤。同时还讲解了爆破密码的方法和设置攻击目标主机的相关参数。 ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • http:my.oschina.netleejun2005blog136820刚看到群里又有同学在说HTTP协议下的Get请求参数长度是有大小限制的,最大不能超过XX ... [详细]
  • Spring常用注解(绝对经典),全靠这份Java知识点PDF大全
    本文介绍了Spring常用注解和注入bean的注解,包括@Bean、@Autowired、@Inject等,同时提供了一个Java知识点PDF大全的资源链接。其中详细介绍了ColorFactoryBean的使用,以及@Autowired和@Inject的区别和用法。此外,还提到了@Required属性的配置和使用。 ... [详细]
  • 背景应用安全领域,各类攻击长久以来都危害着互联网上的应用,在web应用安全风险中,各类注入、跨站等攻击仍然占据着较前的位置。WAF(Web应用防火墙)正是为防御和阻断这类攻击而存在 ... [详细]
  • ZSI.generate.Wsdl2PythonError: unsupported local simpleType restriction ... [详细]
  • 本文介绍了Web学习历程记录中关于Tomcat的基本概念和配置。首先解释了Web静态Web资源和动态Web资源的概念,以及C/S架构和B/S架构的区别。然后介绍了常见的Web服务器,包括Weblogic、WebSphere和Tomcat。接着详细讲解了Tomcat的虚拟主机、web应用和虚拟路径映射的概念和配置过程。最后简要介绍了http协议的作用。本文内容详实,适合初学者了解Tomcat的基础知识。 ... [详细]
  • Webmin远程命令执行漏洞复现及防护方法
    本文介绍了Webmin远程命令执行漏洞CVE-2019-15107的漏洞详情和复现方法,同时提供了防护方法。漏洞存在于Webmin的找回密码页面中,攻击者无需权限即可注入命令并执行任意系统命令。文章还提供了相关参考链接和搭建靶场的步骤。此外,还指出了参考链接中的数据包不准确的问题,并解释了漏洞触发的条件。最后,给出了防护方法以避免受到该漏洞的攻击。 ... [详细]
  • flowable工作流 流程变量_信也科技工作流平台的技术实践
    1背景随着公司业务发展及内部业务流程诉求的增长,目前信息化系统不能够很好满足期望,主要体现如下:目前OA流程引擎无法满足企业特定业务流程需求,且移动端体 ... [详细]
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
author-avatar
一二三
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有