热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

存储过程不可以封装_3D封装之TSV工艺总结

转载自半导体百科作者:JohnH.Lau当前,3D封装技术正席卷半导体行业,引起整个行业的广泛关注。如今摩尔定律趋缓,而3D封装技术将会取

转载自半导体百科

作者:John H. Lau

当前,3D封装技术正席卷半导体行业,引起整个行业的广泛关注。如今摩尔定律趋缓,而3D封装技术将会取而代之成为新的发展方向。因此各家公司一直在大力投资3D封装技术,以便占据良好的竞争优势。

图1展示了3D封装技术的潜在应用和大批量制造(HVM)。基本上它可以分为4类:存储芯片堆叠,宽 I / O储存芯片(或逻辑芯片堆叠),宽I / O DRAM和宽 I / O接口(或2.5D集成电路)。

fdd2e29a8def5fdb855b34e73d1f3ada.png

图1:Potential application and high-volume manufacturing of 3D IC integration

  • 存储芯片堆叠

图1最左端图示是Samsung公司在2006年发布的最简单的存储芯片堆叠示意图。这些芯片可能是DRAM(动态随机存取存储器)或I/O数量少于100的NAND闪存(确切地说是78个)。很重要的一点是,这种存储芯片附在有机基板上,即使采用八个芯片堆叠,它们的总厚度(560μm)仍小于普通芯片的厚度。遗憾的是,由于成本问题和引线键合技术的竞争,使用TSV(Through Silicon Via,硅通孔技术)的存储器芯片堆叠目前尚未针对消费产品进行批量生产。目前,Samsung正在开发的下一代服务器产品,很可能考虑采用DDR4(双信道四次同步动态随机存取内存)SDRAM(同步动态存储器)。

  • 宽I / O存储或逻辑堆叠

图1左侧第二个图示显示了一个宽I / O存储器,它由低功耗和宽带存储器组成,通常具有数千个接口引脚。该I / O存储器被称为有源转接板,能够被具有TSV结构的CPU /logic或SoC支持,连接在有机基板上。由于智能手机等移动产品的需求,诸如Samsung公司等已经制造发布该样品。不幸的是,设计公司的基础设施(包括制定行业标准,商业模式和提出有竞争力的价格)都需要时间准备,还未完善。逻辑堆叠便属于这一类。

  • 宽I / O DRAM(HMC)

图1右侧的第三列图示显示了一个宽I / O DRAM。Samsung已经至少三年发表了有关此主题的论文,最后一次,在2011旧金山召开的IEEEISSCC会议上,Samsung展示了一个带有TSV结构的主控制器逻辑芯片(或SoC)上有两个DRAM的样品,该芯片被称为有源转接板。对于这种DRAM,硅通孔和接口引脚的数量略多于1000个。JEDEC标准将此结构定义为在四个通道中具有1200个I/ O引脚(http://www.jedec.org/)。该宽I / O DRAM模块附在有机基板上。近日,由Micron,Samsung,Altera,ARM,Hewlett-Packard,IBM,Microsoft,Open-Silicon,SKHynix和Xilinx等公司组成的HybridMemory Cube(HMC)联盟宣布,将在今年年底前向公众发布一个行业规范。该规范主要针对高性能网络、工业、测试和测量应用。IBM还建议将此用于高端服务器。

  • 无源转接板的宽I / O接口(2.5DIC封装)

图1最右侧图示显示了用于路由/通信/下一代服务器/高性能应用的宽I / O接口。摩尔定律芯片如memory/ ASIC / CPU / ...... 的I/ O数量在几百到几千之间,他们由一片具有TSV和再分配层(RDL)的硅片相连。图1最右侧示例从Xilinx[3-6]的论文中截取,其中FPGA(现场可编程逻辑门阵列)由TSMC的28nm工艺技术制造,转接板为65nm工艺制程。顶部有四个RDL,可让这四个FPGA在很短的距离内相互通信。

下面将对这四组潜在应用的技术流程和3D IC集成技术的HVM进行讨论。HMC中存储芯片堆叠和DRAM的厚度≤50μm。此外,有源和无源转接板厚度≤200μm。本文仅仅考虑芯片-晶圆(C2W)键合(不探讨材料和设备等)。尽管EDA(electronicdesign automation,电子设计自动化)非常重要,本文也不对其进行讨论。同样,像Samsung和TSMC这样想要成为技术的纵向一体化公司(即做到这一切),也不在本文讨论范围。

TSV时代之前的技术流程

在TSV时代之前的技术流程已经被很好地定义和理解。TSV时代之前技术流程描述如下:

FEOL(前段)。这是IC制造的第一部分,其中对各个器件(例如晶体管或电阻器)进行了图形化。该过程是从裸晶片到(但不包括)金属层的沉积。FEOL通常在fab中进行。

BEOL(后段)。这是有源器件在晶片上布线连接的制造过程。该过程从第一层金属开始到具有钝化的PAD。它还包括绝缘体和金属接触,称为MOL(中段)。术语“MOL”很少使用,此工艺常包含在BEOL中。同样,BEOL通常在fab中完成。

OSAT(外包半导体组装和测试)。当钝化后的晶片从fab接收后,将进行电路测试/凸点/减薄/划片/引线键合/倒装芯片/注塑成型/植球/成品测试。

TSV时代的技术流程

TSV时代技术流程主要分三部分讨论:

A)谁制造TSV?

B)谁负责MEOL?

C)谁执行关键步骤(包括FEOL,MOL,BEOL,TSV,MEOL,组装和测试)以及谁将负责完成图1所示的四种3D封装制程。

A) 谁制造TSV

以下TSV制造工序将会对多种因素产生影响,因此必须予以区分。

Via-First工艺制备TSVs:TSVs在FEOL工艺之前制造,并且只能由fab完成。因为器件的制备(例如晶体管)比TSV重要得多,因此很难在fab中完成TSV工艺。

Via-Middle工艺制备TSVs:TSVs在FEOL(例如晶体管)和MOL(例如金属接触)之后,在BEOL(例如金属层)之前制备。在这种工艺下,由于TSV制造过程介于它们之间,因此BEOL工艺不再包含MOL(图2和图3)。由于工艺流程和设备的兼容性,通过Via-Middle工艺制备的TSV通常也由fab完成。

6e00ef05f0769b3b0c2d8bdc9d3adcb6.png

图2:Critical steps and ownerships for (face-to-back) wide I/O memory using the TSVvia-middle fabrication process.

Via-Last工艺制造的TSVs(从晶圆正面):在FEOL,MOL和BEOL工艺之后制造TSV。迄今为止,没有一篇论文发表过相关报道。

Via-Last工艺制造TSVs(从晶圆背面):在FEOL,MOL和BEOL工艺之后制造TSV。CMOS图像传感器就是一个例子。但严格来说,CMOS图像传感器不是3D IC集成工艺的示例。对于CMOS器件,Leti等人发表的论文提供了唯一可信的证据。但是,由于工艺和技术问题,应避免使用Via-Last工艺制造TSV(从晶圆背面)直到这些问题得到解决。

7d16e9ec58fe740dc304bacdd3aaa62e.png

图3:Critical steps and ownerships for (face-to-face) wide I/O memory using the TSVvia-middle fabrication process.

基于上述讨论,似乎对应用于3D IC封装技术有源器件晶片,使用via-middle工艺制造TSV更为理想。此外,由于fab已经拥有相关设备,具备相关专业知识技能,TSV应由fab厂制造,并且制造TSV的成本不到制造(≤32nm)器件晶片的成本的5%!

对于无源TSV转接板又如何呢:当业界定义用于3D IC封装的TSV流程时,还没有无源转接板。此外,由于无源转接板中没有有源器件,因此它们不适用上述提到的的任意工艺!

谁想要生产无源转接板TSV:fab和OSAT都希望生产!它取决于版图,设计和制造能力,尤其是RDL的线宽和间距。通常,OSAT可以实现几微米的线宽和间距。否则,它就应该由fab生产。

B)谁负责MEOL工艺

对于HMC中DRAMs和存储.芯片堆叠的厚度,以及考虑到有源和无源转接板的厚度,所有制造的TSV都是盲孔。盲孔TSV工艺之后是焊料凸点/临时粘合/减薄/ TSV露点/薄晶圆支撑转移/剥离/清洁,这些过程统称为MEOL(生产线的中端)。对于这项工作,除了纵向一体化公司公司(例如,TSMC和Samsung集团),最好由OSAT完成MEOL流程。

C)量产3D封装的关键步骤分工

C.1)TSV Via-Middle工艺制造宽I / O存储器(面对背):图2显示了该工艺的关键步骤和制备工厂。在FEOL(用于对器件进行图案化)和MOL(用于形成金属接触)之后,通过五个关键步骤制造TSVs,即通孔制造。通孔是由深反应等离子蚀刻形成的(DRIE),电介质是通过等离子体增强化学气相沉积的(PECVD),阻挡层和种子层通过物理气相沉积(PVD),使用电镀铜填充和化学机械抛光(CMP)去除覆盖的铜。这些步骤之后是金属层的堆积,最后是钝化/开口(BEOL)。所有这些步骤都应在fab中完成。

MEOL首先通过凸点下金属化(UBM)以及使用C4(普通晶圆凸点)焊接到整个晶片上。然后用粘合剂将TSV晶片临时粘合到载体晶片上。再将TSV晶片反向研磨至铜填充TSV顶部几微米。接着进行硅干法蚀刻,直到铜填充TSV顶部以下几微米。之后,在整个晶片上进行低温隔离SiN / SiO2沉积。然后使用CMP去除SiN / SiO2和Cu以及Cu填充TSV(Cu显露)的晶种层。最后,在铜填充TSV的顶部制备UBM。所有这些步骤应由OSAT完成。

分别用微小的焊料凸点或带有焊帽的Cu柱对存储器晶片进行微凸点处理。然后将晶片切成带有微凸点/Cu柱的单个芯片。这些步骤也应由OSAT完成。

接下来是芯片到晶圆(C2W)的键合,如微凸点存储芯片(通过自然回流或热压缩)与TSV晶片键合。在C2W面对背键合之后,载体晶片从TSV晶片上剥离下来。随后将TSV晶片切成单独的TSV模块。将该TSV模块(自然)回流焊接到封装基板上,进行测试。所有这些C2W键合,切割,组装和测试步骤均应由OSAT完成。

C.2)TSV Via-Middle工艺制造宽I / O存储器(面对面):FEOL,MOL,TSV和BEOL过程与TSV via-middle(面对背)工艺流程完全相同。但是,接下来的工艺流程是不同的。TSV晶片不是在UBM后使用C4技术焊接到载体晶片上,而是临时连接到载体#1。然后,对TSV晶片进行背面研磨,并完成Cu显露和UBM。这些步骤之后进行C4工艺,并临时粘合到第二个载体#2。然后,将载体#1从TSV晶片上剥离下来,并进行C2W(面对面)键合。在C2W键合之后,将载体#2从TSV晶片上剥离。随后将TSV晶片切成单独的TSV模块。将该TSV模块回流焊接到封装基板上,然后进行测试。关键步骤如图3所示。

C.3)TSV Via-Last工艺(从背面)制造宽I / O存储器(面对背):图4显示了该工艺的关键步骤和制备工厂。在FEOL(对器件进行图案化),MOL(形成金属接触)和BEOL(构建金属层以及钝化/开口)之后进行UBM制备和C4工艺。然后,将该结构临时和载体晶片键合。再进行背面研磨,TSV制造和钝化/开口以及UBM。

接下来是C2W面对背键合,将载体晶片从TSV晶片上剥离,然后将TSV晶片切成单独的TSV模块。再将该TSV模块回流焊接到封装基板上进行测试。

6106960009d4b2451cba84ce893e1de2.png

图4: Critical steps andownerships for (face-to-back) wide I/O memory using the TSV via-last from thebackside fabrication process.

C.4)TSV Via-Last工艺(从背面)制造宽I / O存储器(面对面):FEOL,MOL和BEOL工艺与和面对背TSV via-last(从背面)过程完全相同。但是,对于面对面情况而言,在UBM步骤之后,器件晶片临时粘合到载体#1如图5所示。然后,对背面进行背面研磨,TSV加工和钝化/开口处理。在这些过程之后,制备UBM,进行C4工艺,并临时粘合至载体#2。然后完成与载体#1的剥离。

68996a6baede26b74546f353a5cb1630.png

图5:Critical steps and ownerships for (face-to-face) wide I/O memory using the TSVvia-last from the backside fabrication process.

完成上述过程后,接下来进行C2W面对面粘合。在C2W键合之后,载体#2晶片从TSV晶片上剥离并切割成单独的TSV模块。TSV模块将焊接在封装基板上,然后进行测试。

从图4和图5可以看出,TSV既可以由fab制造也可以由OSAT制造。然而,由于工艺流程的关系,fab实现这一目标的机会非常渺茫。(一旦晶片离开fab由OSAT接收处理,晶片几乎不可能再回到fab进行进一步处理。)同样,由于技术问题,例如击中晶片中各种嵌入式对准目标, x,y和z方向(要使晶片顶侧上的金属层对齐以及从背面形成的TSV定位),这对于OSAT来说也是非常具有挑战性的。因此,在解决这些问题之前,应避免使用TSV via-last(从背面)制造工艺

C.5)TSV Via-Middle工艺制造宽I / O DRAM:在DRAM和SoC/logic晶片的FEOL,MOL,TSV和BEOL之后,SoC /logic晶圆将按照图2(C.1)所示的面对背,或图3 (C.2)面对面工艺步骤进行操作。对于DRAM,首先要进行UBM,然后是整个晶圆的微凸点工艺。在这些过程之后,将临时粘合到载体晶片,进行背面研磨减薄,铜暴露和UBM。再依次进行载体晶圆剥离和将TSV DRAM晶圆切成单个TSV DRAM芯片,如图6所示。

4dbfd44672e04a499f510f9be511dc2f.png

图6:Critical steps and ownerships for wide I/O DRAM using the TSV via-middlefabrication process.

下一个过程是C2W(DRAM芯片到SoC/Logic晶片)键合(例如,2堆叠,4堆叠,6堆叠或8堆叠)。在C2W键合之后,载体晶片从SoC /Logic晶圆剥离并切割成单独的混合封装体(DRAM堆叠+SoC /Logic)。这些步骤之后,将二次成型的混合存储立方体组装在封装基板上,然后进行测试。

C.6)TSV Via-Middle工艺制造宽储存器芯片堆叠:存储器芯片(DRAM或NAND闪存)堆叠的关键步骤和制备工厂与宽I / O DRAM情况完全相同,如图6(C.5)所示。然而,不同于宽I / O DRAM情况下采用C2W键合,内存芯片堆叠是通过首先堆叠各个TSV芯片然后将它们连接到封装基板上并且采用灌胶成型来实现的。在这些步骤之后,将TSV存储器芯片堆叠模块连接到印刷电路板上,例如双列直插式存储器模块(RDIMM)。

C.7)2.5D IC封装技术制备TSV / RDL无源转接板:图7显示了关键步骤和制备工厂。在一块dummy硅(无有源器件)上沉积钝化层之后,制作TSV,构建RDL并进行钝化/开口。在UBM之后,将TSV晶片临时粘合到载体#1。然后进行背面研磨,硅蚀刻,低温钝化和铜暴露。其后,完成UBM,C4工艺以及与载体#2的临时粘合。不带TSV的器件晶圆分别用微焊料凸点或带有焊帽的Cu柱对存储器晶片进行微凸点处理。再将器件晶片切成有微凸点/Cu柱的单个芯片。

1f34448b3a9b603365b83073a16b1801.png

图7:Critical steps and ownerships for 2.5D IC integration with a TSV/RDL passiveinterposer.

接下来要完成的工作是剥离载体#1,进行C2W键合(器件芯片与TSV晶片的键合)。C2W键合之后,载体#2被剥离并且TSV晶片被切割成单独的TSV模块。最后,TSV模块可以组装在封装基板上进行测试。图7中可以看出TSV和RDL既可以由fab制造也可由OSAT制造。它取决于布局,设计和制造能力,尤其是RDL的线宽和间距。通常,OSAT可以完成几微米的线宽和间距。否则,它应该由fab完成。除了像TSMC这样的纵向一体化公司希望完全在内部进行晶圆级封装工艺(CoWoS)之外,大多数设计公司更偏向由fab(例如,UMC和GlobalFoundries)来制造盲孔TSV以及无源转接板的RDL。然后,fab将未完成的“ TSV转接板”移交给OSAT进行MEOL(焊料凸点/临时键合/薄晶圆支撑转移/背面研磨/ TSV显露/剥离/清洁),组装和测试。对于未完成的TSV器件晶片也是如此。

总结

文本研究了3D IC集成制造技术的技术流程。讨论了FEOL,MOL,BEOL,TSV,MEOL、封装,测试等关键步骤和负责制备的工厂,以及它们对于诸如存储芯片堆叠、宽I / O存储器(或逻辑堆叠)、宽I/ O DRAM(或HMC)和宽I/ O接口(或2.5D IC集成)等潜在应用。以下是一些重要的结果和建议:

参考文献:

J. H. Lau., Through-Silicon Via for 3DIntegration, McGraw-Hill Book Company, New York, NY, 2012.

U. Kang, H. Chung, S. Heo, D. Park, H.Lee, J. Kim, et al., "8 Gb 3-D DDR3 DRAM Using Through-Silicon-ViaTechnology," IEEE Journal of Solid-State Circuits, Vol. 45, No. 1, Jan.2010, pp. 111-119.

P. Dorsey, "Xilinx Stacked SiliconInterconnect Technology Delivers Breakthrough FPGA Capacity, Bandwidth, andPower Efficiency," Xilinx White Paper: Virtex-7 FPGAs, WP380, Oct. 27,2010, pp. 1-10.

B. Banijamali, S. Ramalingam, K.Nagarajan, R. Chaware, "Advanced Reliability Study of TSV Interposers andInterconnects for the 28nm Technology FPGA," IEEE ECTC Proc., Orlando,Florida, June 2011, pp. 285-290.

R. Chaware, K. Nagarajan, S.Ramalingam, "Assembly and Reliability Challenges in 3D Integration of 28nmFPGA Die on a Large High Density 65nm Passive Interposer," Proc. ofIEEE/ECTC, May 2012, pp. 279-283.

B. Banijamali, S. Ramalingam, H. Liu,M. Kim, "Outstanding and Innovative Reliability Study of 3D TSV Interposerand Fine Pitch Solder Micro-bumps," Proc. of IEEE/ECTC, May 2012, pp.309-314.

A. Redolfi, D. Velenis, S. Thangaraju,P. Nolmans, P. Jaenen, M. Kostermans, et al., "Implementation of anIndustry Compliant, 5x50µm, Via-Middle TSV Technology on 300mm Wafers,"Proc. of IEEE/ECTC, Orlando, Florida, June 2011, pp. 1384—1388.

M. G. Farooq, T. L. Graves-Abe, W. F. Landers,C. Kothandaraman, B. A. Himmel, P. S. Andry, et al., "3D Copper TSVIntegration, Testing and Reliability," Proc. of IEEE/IEDM, Washington DC,Dec. 2011, pp. 7.1.1 — 7.1.4.

H. Chaabouni, M. Rousseau, P. Ldeus, A.Farcy, R. El Farhane, A. Thuaire, et al., "Investigation on TSV impact on65nm CMOS devices and circuits," Proc. of IEEE/IEDM, Dec. 2010, pp. 35.1.1- 35.1.4. [10] Y. C. Hsin, C. Chen, J.H. Lau, P. Tzeng, S. Shen, Y. Hsu, et al., "Effects of Etch Rate onScallop of Through-Silicon Vias (TSVs) in 200mm and 300mm Wafers," IEEEECTC Proc., Orlando, Florida, June 2011, pp. 1130-1135.

C. Wu, S. Chen, P. Tzeng, J. H. Lau, Y.Hsu, J. Chen, et al., "Oxide Liner, Barrier and Seed Layers, andCu-Plating of Blind Through Silicon Vias (TSVs) on 300mm Wafers for 3D ICIntegration," IMAPS Trans., Jour. of Microelectronic Packaging, Vol. 9,No. 1, First Quarter 2012, pp. 31-36. J. C. Chen, J. H. Lau, P. J. Tzeng,S. Chen, C. Wu, C. Chen, et al., "Effects of Slurry in Cu Chemical MechanicalPolishing (CMP) of TSVs for 3-D IC Integration," IEEE Trans. on CPMT, Vol.2, No. 6, June 2012, pp. 956-963.

W. Tsai, H. H. Chang, C. H. Chien, J. H.Lau, H. C. Fu, C. W. Chiang, "How to Select Adhesive Materials forTemporary Bonding and De-Bonding of Thin-Wafer Handling in 3D ICIntegration," IEEE ECTC Proc., Orlando, Florida, June 2011, pp. 989-998.

H. Chang, J. H. Lau, W. Tsai, C. Chien, P.Tzeng, C. Zhan, et al., "Thin Wafer Handling of 300mm Wafer for 3D ICIntegration," 44th International Symp. on Microelectronics, Long Beach,CA, Oct. 2011, pp. 202—207.

A. Jourdain, T. Buisson, A. Phommahaxay,A. Redolfi, S. Thangaraju, Y. Travaly, et al., "Integration of TSVs, waferthinning and backside passivation on full 300mm CMOS wafers for 3D applications,"Proc. of IEEE/ECTC, Orlando, Florida, June 2011, pp. 1122 — 1125.

C. K. Lee, T. C. Chang, J. H. Lau, Y.Huang, H. Fu, J. Huang, et al., "Wafer Bumping, Assembly, and Reliabilityof Fine-Pitch Lead-Free Micro Solder Joints for 3-D IC Integration," IEEETrans. on CPMT, Vol. 2, No. 8, Aug. 2012, pp. 1229-1238.

V. Rao, X. Zhang, S. Ho, R. Rajoo, C.Premachandran, V. Kripesh, et al., "Design and Development of Fine PitchCopper/Low-k Wafer Level Package," IEEE Trans. on Advanced Packaging, Vol.33, No. 2, May 2010, pp. 377—388.

J. H. Lau, C. J. Zhan, P. J. Tzeng, C. K.Lee, M. J. Dai, H. C. Chien, et al., "Feasibility Study of a 3D ICIntegration System-in-Packaging (SiP) from a 300mm Multi-Project Wafer(MPW)," IMAPS Trans., Jour. of Microelectronic Packaging, Vol. 8, No. 4,Fourth Quarter 2011, pp. 171-178.

C.Zhan, P. Tzeng, J. H. Lau, M. Dai, H. Chien, C. Lee, et al., "AssemblyProcess and Reliability Assessment of TSV/RDL/IPD Interposer withMulti-Chip-Stacking for 3D IC Integration SiP," IEEE/ECTC Proc., SanDiego, CA, May 2012, pp. 548-554.

S. Sheu, Z. Lin, J. Hung,, J. H. Lau, P.Chen, et al., "An Electrical Testing Method for Blind Through Silicon Vias(TSVs) for 3D IC Integration," IMAPS Trans., Jour. of MicroelectronicPackaging, Vol. 8, No. 4, Fourth Quarter 2011, pp. 140-145.

J. F. Hung, J. H. Lau, P. Chen, S. Wu, S.Lai, M. Li, et al., "Electrical Testing of Blind Through-Silicon Via (TSV)for 3D IC Integration," IEEE/ECTC Proc., San Diego, CA, May 2012, pp.564-570.

J. Chien, Y. Chao, J. H. Lau, M. Dai, R.Tain, M. Dai, et al., "A Thermal Performance Measurement Method for BlindThrough Silicon Vias (TSVs) in a 300mm Wafer," IEEE ECTC Proceedings,Orlando, Florida, June 2011, pp. 1204-1210.

本文由IC字幕组翻译自2014年ChipScaleReview第三期 ,Gab校对修改



推荐阅读
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 本文讨论了在Windows 8上安装gvim中插件时出现的错误加载问题。作者将EasyMotion插件放在了正确的位置,但加载时却出现了错误。作者提供了下载链接和之前放置插件的位置,并列出了出现的错误信息。 ... [详细]
  • XML介绍与使用的概述及标签规则
    本文介绍了XML的基本概念和用途,包括XML的可扩展性和标签的自定义特性。同时还详细解释了XML标签的规则,包括标签的尖括号和合法标识符的组成,标签必须成对出现的原则以及特殊标签的使用方法。通过本文的阅读,读者可以对XML的基本知识有一个全面的了解。 ... [详细]
  • 本文介绍了Java高并发程序设计中线程安全的概念与synchronized关键字的使用。通过一个计数器的例子,演示了多线程同时对变量进行累加操作时可能出现的问题。最终值会小于预期的原因是因为两个线程同时对变量进行写入时,其中一个线程的结果会覆盖另一个线程的结果。为了解决这个问题,可以使用synchronized关键字来保证线程安全。 ... [详细]
  • 本文讨论了clone的fork与pthread_create创建线程的不同之处。进程是一个指令执行流及其执行环境,其执行环境是一个系统资源的集合。在调用系统调用fork创建一个进程时,子进程只是完全复制父进程的资源,这样得到的子进程独立于父进程,具有良好的并发性。但是二者之间的通讯需要通过专门的通讯机制,另外通过fork创建子进程系统开销很大。因此,在某些情况下,使用clone或pthread_create创建线程可能更加高效。 ... [详细]
  • MyBatis多表查询与动态SQL使用
    本文介绍了MyBatis多表查询与动态SQL的使用方法,包括一对一查询和一对多查询。同时还介绍了动态SQL的使用,包括if标签、trim标签、where标签、set标签和foreach标签的用法。文章还提供了相关的配置信息和示例代码。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 深入理解Kafka服务端请求队列中请求的处理
    本文深入分析了Kafka服务端请求队列中请求的处理过程,详细介绍了请求的封装和放入请求队列的过程,以及处理请求的线程池的创建和容量设置。通过场景分析、图示说明和源码分析,帮助读者更好地理解Kafka服务端的工作原理。 ... [详细]
  • 在Oracle11g以前版本中的的DataGuard物理备用数据库,可以以只读的方式打开数据库,但此时MediaRecovery利用日志进行数据同步的过 ... [详细]
  • 本文介绍了H5游戏性能优化和调试技巧,包括从问题表象出发进行优化、排除外部问题导致的卡顿、帧率设定、减少drawcall的方法、UI优化和图集渲染等八个理念。对于游戏程序员来说,解决游戏性能问题是一个关键的任务,本文提供了一些有用的参考价值。摘要长度为183字。 ... [详细]
  • 使用Spring AOP实现切面编程的步骤和注意事项
    本文介绍了使用Spring AOP实现切面编程的步骤和注意事项。首先解释了@EnableAspectJAutoProxy、@Aspect、@Pointcut等注解的作用,并介绍了实现AOP功能的方法。然后详细介绍了创建切面、编写测试代码的过程,并展示了测试结果。接着讲解了关于环绕通知的使用方法,并修改了FirstTangent类以添加环绕通知方法。最后介绍了利用AOP拦截注解的方法,只需修改全局切入点即可实现。使用Spring AOP进行切面编程可以方便地实现对代码的增强和拦截。 ... [详细]
  • 第七课主要内容:多进程多线程FIFO,LIFO,优先队列线程局部变量进程与线程的选择线程池异步IO概念及twisted案例股票数据抓取 ... [详细]
  • 本文转载自:https:blog.csdn.netu924512005articledetails70655272详细了解FPGAselectIO是学习FPGA基础 ... [详细]
  • 本文介绍了如何使用python从列表中删除所有的零,并将结果以列表形式输出,同时提供了示例格式。 ... [详细]
  • Windows7企业版怎样存储安全新功能详解
    本文介绍了电脑公司发布的GHOST WIN7 SP1 X64 通用特别版 V2019.12,软件大小为5.71 GB,支持简体中文,属于国产软件,免费使用。文章还提到了用户评分和软件分类为Win7系统,运行环境为Windows。同时,文章还介绍了平台检测结果,无插件,通过了360、腾讯、金山和瑞星的检测。此外,文章还提到了本地下载文件大小为5.71 GB,需要先下载高速下载器才能进行高速下载。最后,文章详细解释了Windows7企业版的存储安全新功能。 ... [详细]
author-avatar
手机用户2602919763
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有