热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

从一道常见习题的自然延伸谈起

以下是复旦高代教材复习题六的第19题或高代白皮书的例6.18:习题1设$A,B,C$均为$n$阶复方阵,满足$CAB-BA$,$ACCA$和$BCCB$,求证:$C$的特征值全为零

以下是复旦高代教材复习题六的第 19 题或高代白皮书的例 6.18:

习题 1  设 $A,B,C$ 均为 $n$ 阶复方阵, 满足 $C=AB-BA$, $AC=CA$ 和 $BC=CB$, 求证: $C$ 的特征值全为零.

这道题目有多种证法, 其中利用特征值理论进行证明是最直接的方法, 例如大家可以参考复旦高代白皮书例 6.18 的两种证法. 第一种证法是纯代数的方法, 利用了矩阵迹的相关性质以及 Newton 公式, 通过 $C$ 的特征值的幂次计算出了其特征多项式. 这种方法最简单并且可以只要求 $C$ 与 $A,B$ 中的任意一个乘法可交换即可. 第二种证法是纯几何的证法, 利用了如下基本事实: 若两个矩阵乘法可交换, 那么一个矩阵的特征子空间一定是另一个矩阵的不变子空间, 这也是线性变换理论中的重要结论. 当然, 上述习题还有其他的证法, 比如下面的证法三利用了 Jordan 标准型理论来进行证明.

习题 1 的证法三  注意到上述习题的条件和结论在同时相似关系下不改变, 故不妨从一开始就假设 $C$ 是 Jordan 标准型 $J=\mathrm{diag}\{J_1,J_2,\cdots,J_k\}$, 其中 $\lambda_1,\lambda_2,\cdots,\lambda_k$ 是 $C$ 的全体不同特征值, $J_i$ 是对应于特征值 $\lambda_i$ 的根子空间的分块, 即所有属于特征值 $\lambda_i$ 的 Jordan 块拼成的分块对角阵. 由 $AC=CA$, $BC=CB$ 以及高代白皮书的例 6.66 可知, $A=\mathrm{diag}\{A_1,A_2,\cdots,A_k\}$, $B=\mathrm{diag}\{B_1,B_2,\cdots,B_k\}$ 都是分块对角阵且与 $C$ 有着相同的分块方式. 再由 $C=AB-BA$ 可得 $J_i=A_iB_i-B_iA_i\,(1\leq i\leq k)$, 两边同时取迹即得 $\lambda_i=0$, 从而 $k=1$ 且 $C$ 的特征值全为零.  $\Box$

上述三种证法都证明了 $C$ 是一个幂零矩阵. 一个自然延伸的问题是, $C$ 的幂零指数 $N=\min\{r\in\mathbb{Z}^+\mid C^r=0\}$ 等于多少? 如果不能给出 $N$ 的确切数值, 那么 $N$ 的最佳上界是多少呢? 由 Cayley-Hamilton 定理可知 $C^n=0$, 从而 $N\leq n$. 下面我们先来证明, $C$ 的幂零指数 $N$ 严格小于 $n$.

引理 2  记号和假设同习题 1, 则 $C$ 的幂零指数严格小于其阶数 $n$.

证明  用反证法来证明结论. 设 $C$ 的幂零指数等于 $n$, 则 $C$ 的特征多项式和极小多项式都等于 $\lambda^n$, 从而 $C$ 的 Jordan 标准型为 $J_n(0)$. 沿用证法三的记号和讨论, 不妨设 $C=J_n(0)$, 则由 $A,B$ 都与 $C$ 乘法可交换以及高代白皮书的例 7.23 可知, 存在多项式 $f(\lambda),g(\lambda)$, 使得 $A=f(C),B=g(C)$, 从而 $C=AB-BA=f(C)g(C)-g(C)f(C)=0$, 矛盾.  $\Box$

为了得到 $C$ 的幂零指数的最佳上界, 我们先证明如下引理.

引理 3  记号和假设同习题 1, 设 $f(\lambda)=\sum\limits_{i=0}^ma_i\lambda^i$ 为 $m$ 次多项式.

(i)  对任意的 $k\geq 1$, $AB^k-B^kA=kB^{k-1}C$, 其中约定 $B^0=I_n$;

(ii)  $Af(B)-f(B)A=f'(B)C$;

(iii)  若 $B$ 适合 $f(\lambda)$, 即 $f(B)=0$, 则 $C^m=0$.

证明  (i)  对 $k$ 进行归纳, 当 $k=1$ 时, 结论显然成立. 设 $k-1$ 时结论成立, 即有 $AB^{k-1}-B^{k-1}A=(k-1)B^{k-2}C$, 则 $$\begin{align*}AB^k-B^kA&=AB^k-B^{k-1}AB+B^{k-1}AB-B^kA\\ &=(AB^{k-1}-B^{k-1}A)B+B^{k-1}(AB-BA)\\ &=(k-1)B^{k-2}CB+B^{k-1}C=kB^{k-1}C.\end{align*}$$

(ii)  由 (i) 可知, $Af(B)-f(B)A=\sum\limits_{i=0}^ma_i(AB^i-B^iA)=\sum\limits_{i=1}^ma_iiB^{i-1}C=f'(B)C$.

(iii)  由 (ii) 及 $f(B)=0$ 可得 $f'(B)C=0$, 再由 (ii) 可得 $Af'(B)-f'(B)A=f''(B)C$, 从而 $f''(B)C^2=Af'(B)C-f'(B)AC=Af'(B)C-f'(B)CA=0$. 同理不断地做下去, 最后可得 $f^{(m)}(B)C^m=0$, 注意到 $f^{(m)}(B)=m!a_mI_n$, 故 $C^m=0$.  $\Box$

习题 1 的证法四  在引理 3 (iii) 中, 取 $f(\lambda)=|\lambda I_n-B|$ 为 $B$ 的特征多项式, 则由 Cayley-Hamilton 定理可知 $f(B)=0$, 故由 (iii) 可知 $C^n=0$, 即 $C$ 是幂零阵.  $\Box$

命题 4  记号和假设同习题 1, 设 $m$ 是 $A,B$ 的极小多项式次数的最小值, 则 $C^m=0$. 特别地, $C$ 的幂零指数 $N\leq m$, 并且存在例子使得等号成立.

证明  不妨设 $B$ 的极小多项式 $m(\lambda)$ 的次数为 $m$, 它小于等于 $A$ 的极小多项式的次数. 在引理 3 (iii) 中代入 $m(\lambda)$, 即可得到 $C^m=0$. 我们举例说明这样的 $m$ 可以等于幂零指数. 设 $A=\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $B=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $C=AB-BA=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. 容易验证 $C$ 与 $A,B$ 都乘法可交换, $A,B$ 的极小多项式都是 $\lambda^2$, 并且 $C$ 的幂零指数就等于 2.  $\Box$

一般来说, $C$ 的幂零指数是很难确定的. 例如, 若 $A,B$ 乘法可交换, 则 $C=0$, 此时 $C$ 的幂零指数等于 1, 但 $A,B$ 的极小多项式次数的最小值可以等于 $n$. 因此命题 4 说明: $A,B$ 的极小多项式次数的最小值只是幂零指数的最佳上界而已. 接下去我们考虑习题 1 的一个变形, 令 $C=\mu B$, 其中 $\mu$ 是非零复数. 在这种情形下, $C$ 与 $B$ 乘法可交换, 但并不要求 $AC=CA$ 成立, 所以下面的讨论跟上面的讨论并没有太多的关联. 这个变形是一道常见的考研试题, 也是 2009 年第一届全国大学生数学竞赛预赛的一道代数试题 ($\mu=1$ 的情形).

习题 5  设 $A,B$ 均为 $n$ 阶复方阵, 满足 $AB-BA=\mu B$, 其中 $\mu$ 为非零复数. 求证: $B$ 的特征值全为零, 并且 $A,B$ 有公共的特征向量.

证明  注意到习题 1 的证法一只利用了 $BC=CB$ 这一条件, 所以作为证法一的特例, 马上可以得到 $B$ 的特征值全为零. 设 $V_0$ 为 $B$ 属于特征值零的特征子空间, 容易验证 $V_0$ 是 $A$-不变子空间. 考虑 $A$ 在 $V_0$ 上的限制, 这个线性变换一定存在特征向量 $\alpha$, 于是 $\alpha$ 就是 $A,B$ 公共的特征向量.  $\Box$

我们同样可以考虑习题 5 自然延伸的问题, 那就是 $B$ 的幂零指数的最佳上界是多少呢? 因为习题 1 和习题 5 在条件上有差别, 所以命题 4 的结论并不适用于习题 5, 故我们转而证明如下结论.

命题 6  记号和假设同习题 5, 设 $A$ 有 $k$ 个不同的特征值, 则 $B^k=0$. 特别地, $B$ 的幂零指数 $N\leq k$.

证明  我们利用 $A$ 的 Jordan 标准型来进行证明. 任一复数 $z&#61;a&#43;bi$ 都等同于复平面上的点 $(a,b)$, 规定实部的权重大于虚部的权重, 故可对全体复数进行实部加虚部的字典排序. 对 $A$ 乘以 $1/\mu$ 不改变命题 6 的条件和结论, 故不妨设 $\mu&#61;1$. 注意到命题 6 的条件和结论在同时相似关系下不改变, 故不妨从一开始就假设 $A$ 是 Jordan 标准型 $J&#61;\mathrm{diag}\{J_1,J_2,\cdots,J_k\}$, 其中 $\lambda_1>\lambda_2>\cdots>\lambda_k$ 是 $A$ 的全体不同特征值, $J_i$ 是对应于特征值 $\lambda_i$ 的根子空间的分块, 即所有属于特征值 $\lambda_i$ 的 Jordan 块拼成的分块对角阵. 设 $B&#61;(B_{ij})_{k\times k}$ 为对应的分块, 则由 $AB-BA&#61;B$ 可得 $J_iB_{ij}&#61;B_{ij}(J_j&#43;I)$. 注意到 $J_i$ 的特征值全为 $\lambda_i$, $J_j&#43;I$ 的特征值全为 $\lambda_j&#43;1$, 若 $i\geq j$, 则 $\lambda_i\leq \lambda_j<\lambda_j&#43;1$, 故 $J_i$ 与 $J_j&#43;I$ 没有公共的特征值, 由高代白皮书的例 6.63 可知 $B_{ij}&#61;0$; 若 $i

例 7  将 $AB-BA&#61;\mu B$ 改写为 $AB&#61;B(A&#43;\mu I_n)$, 取矩阵 $A&#61;\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. 当 $\mu&#61;1$ 时, 取 $B&#61;\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, 则命题 6 中的 $k&#61;2$ 就等于 $B$ 的幂零指数, 即达到了最佳上界; 而当 $\mu&#61;2$ 时, 满足上述条件的矩阵 $B&#61;0$, 这个结论比命题 6 的结论 $B^2&#61;0$ 来的更强. 因此, 对应于不同的 $\mu$, $A$ 的不同特征值的个数并非都是 $B$ 的幂零指数的最佳上界. 下面我们来做一点改进, 使得上界达到最佳.

命题 8  设 $R(A)$ 是 $A$ 的谱集, 令 $$m&#61;\max\limits_{\lambda\in R(A)}\{s(\lambda)\in\mathbb{Z}^&#43;\mid \lambda&#43;j\mu\in R(A)\,(\forall\,0\leq j

证明  由 Jordan 标准型理论可知, 存在 $\mathbb{C}^n$ 的一组基 $\{e_1,e_2,\cdots,e_n\}$, 使得 $A$ 在这组基下的表示矩阵为 Jordan 标准型 $J&#61;\mathrm{diag}\{J_{r_1}(\lambda_1),J_{r_2}(\lambda_2),\cdots,J_{r_k}(\lambda_k)\}$. 对特征值 $\lambda_1$ 而言, 我们有 $$Ae_1&#61;\lambda_1e_1,Ae_2&#61;e_1&#43;\lambda_1e_2,\cdots,Ae_{r_1}&#61;e_{r_1-1}&#43;\lambda_1e_{r_1}.$$ 设 $s_1&#61;s(\lambda_1)$, 即满足 $\lambda_1&#43;j\mu\in R(A)\,(\forall\,0\leq j

由定义可知, 命题 8 中的 $m$ 小于等于 $A$ 的不同特征值的总个数, 因此命题 8 提供的上界比命题 6 提供的上界更加精确. 例 7 的 $\mu&#61;2$ 的例子中, $m&#61;1$ 就是 $B$ 的幂零指数, 这也说明命题 8 给出的是最佳上界.

  命题 6 是复旦大学数学学院 16 级高等代数 II 期中考试第五大题的推广, 命题 6 的证明由 16 级陈杰新同学给出, 命题 8 的证明由 16 级朱民哲同学给出.



推荐阅读
  • 本文为Codeforces 1294A题目的解析,主要讨论了Collecting Coins整除+不整除问题。文章详细介绍了题目的背景和要求,并给出了解题思路和代码实现。同时提供了在线测评地址和相关参考链接。 ... [详细]
  • 2018年人工智能大数据的爆发,学Java还是Python?
    本文介绍了2018年人工智能大数据的爆发以及学习Java和Python的相关知识。在人工智能和大数据时代,Java和Python这两门编程语言都很优秀且火爆。选择学习哪门语言要根据个人兴趣爱好来决定。Python是一门拥有简洁语法的高级编程语言,容易上手。其特色之一是强制使用空白符作为语句缩进,使得新手可以快速上手。目前,Python在人工智能领域有着广泛的应用。如果对Java、Python或大数据感兴趣,欢迎加入qq群458345782。 ... [详细]
  • http:my.oschina.netleejun2005blog136820刚看到群里又有同学在说HTTP协议下的Get请求参数长度是有大小限制的,最大不能超过XX ... [详细]
  • 判断数组是否全为0_连续子数组的最大和的解题思路及代码方法一_动态规划
    本文介绍了判断数组是否全为0以及求解连续子数组的最大和的解题思路及代码方法一,即动态规划。通过动态规划的方法,可以找出连续子数组的最大和,具体思路是尽量选择正数的部分,遇到负数则不选择进去,遇到正数则保留并继续考察。本文给出了状态定义和状态转移方程,并提供了具体的代码实现。 ... [详细]
  • Oracle分析函数first_value()和last_value()的用法及原理
    本文介绍了Oracle分析函数first_value()和last_value()的用法和原理,以及在查询销售记录日期和部门中的应用。通过示例和解释,详细说明了first_value()和last_value()的功能和不同之处。同时,对于last_value()的结果出现不一样的情况进行了解释,并提供了理解last_value()默认统计范围的方法。该文对于使用Oracle分析函数的开发人员和数据库管理员具有参考价值。 ... [详细]
  • 本文介绍了一个在线急等问题解决方法,即如何统计数据库中某个字段下的所有数据,并将结果显示在文本框里。作者提到了自己是一个菜鸟,希望能够得到帮助。作者使用的是ACCESS数据库,并且给出了一个例子,希望得到的结果是560。作者还提到自己已经尝试了使用"select sum(字段2) from 表名"的语句,得到的结果是650,但不知道如何得到560。希望能够得到解决方案。 ... [详细]
  • 本文详细介绍了Spring的JdbcTemplate的使用方法,包括执行存储过程、存储函数的call()方法,执行任何SQL语句的execute()方法,单个更新和批量更新的update()和batchUpdate()方法,以及单查和列表查询的query()和queryForXXX()方法。提供了经过测试的API供使用。 ... [详细]
  • 2020年第十一届蓝桥杯决赛JAVA B G题“皮亚诺曲线距离“的个人题解目录
    本文是2020年第十一届蓝桥杯决赛JAVA B G题“皮亚诺曲线距离“的个人题解目录。文章介绍了皮亚诺曲线的概念和特点,并提供了计算皮亚诺曲线上两点距离的方法。通过给定的两个点的坐标,可以计算出它们之间沿着皮亚诺曲线走的最短距离。本文还提供了个人题解的目录,供读者参考。 ... [详细]
  • 也就是|小窗_卷积的特征提取与参数计算
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。Dense和Conv2D根本区别在于,Den ... [详细]
  • FeatureRequestIsyourfeaturerequestrelatedtoaproblem?Please ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • 前景:当UI一个查询条件为多项选择,或录入多个条件的时候,比如查询所有名称里面包含以下动态条件,需要模糊查询里面每一项时比如是这样一个数组条件:newstring[]{兴业银行, ... [详细]
  • 3.223.28周学习总结中的贪心作业收获及困惑
    本文是对3.223.28周学习总结中的贪心作业进行总结,作者在解题过程中参考了他人的代码,但前提是要先理解题目并有解题思路。作者分享了自己在贪心作业中的收获,同时提到了一道让他困惑的题目,即input details部分引发的疑惑。 ... [详细]
  • 摘要: 在测试数据中,生成中文姓名是一个常见的需求。本文介绍了使用C#编写的随机生成中文姓名的方法,并分享了相关代码。作者欢迎读者提出意见和建议。 ... [详细]
  • 本文讨论了Kotlin中扩展函数的一些惯用用法以及其合理性。作者认为在某些情况下,定义扩展函数没有意义,但官方的编码约定支持这种方式。文章还介绍了在类之外定义扩展函数的具体用法,并讨论了避免使用扩展函数的边缘情况。作者提出了对于扩展函数的合理性的质疑,并给出了自己的反驳。最后,文章强调了在编写Kotlin代码时可以自由地使用扩展函数的重要性。 ... [详细]
author-avatar
手机用户2502910855
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有