热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

CAN总线收发节点设计

CAN总线收发节点设计写在前面这是微机接口的一个项目作业。这段时间一直在宿舍隔离,没办法进行焊接和测试,但原理和代码已经在学习板子上经过验证。设计目标CAN在工业现场大量应用,尤其

CAN总线收发节点设计

写在前面

这是微机接口的一个项目作业。

这段时间一直在宿舍隔离,没办法进行焊接和测试,但原理和代码已经在学习板子上经过验证。


设计目标

CAN在工业现场大量应用,尤其是汽车工业,设计一种CAN总线收发节点,该节点自身带8路模拟信号采集,采集结果通过CAN总线发送到上位机并显示。


技术要求

(1)系统以51单片机为控制器,和具有CAN接口的器件能通信;

(2)CAN控制器用SJA1000,总线收发器用PCA82C250;

(3)节点带8路模拟信号采集,信号范围0-5V;

(4)用USB转CAN模块,通过USB口接收CAN节点发送的数据,验证结果是否正确。


提交材料

(1)提交纸质版设计报告1份(包括测量原理、主要电路设计、主要器件选型、程序设计原理、关键程序设计举例等);

(2)电子版设计报告、系统电气原理图、完整的程序代码

(3)提交实物1套,能现场演示(所需的can调试助手 can总线分析仪可以找我);

(4)该题目4人完成(1人负责硬件设计、1人负责单片机软件设计、1人负责调试、1人负责设计报告的整理编辑以及答辩PPT制作),在设计报告上写清楚每人所承担的工作。


项目实现


设计成果展示


实物展示


原理图设计


PCB设计




上位机效果




测量原理

ADC数模转换原理,这里采用PCF8591AD采样芯片,测量原理如下:

通过引脚AIN0、AIN1、AIN2、AIN3输入的模拟信号(电压),经过模拟信号多路复用器、采样与保持、比较器,把处理后的数据放入ADC数据寄存器中,通过I2C总线接口传递给51主控芯片。


主要电路设计


供电与程序烧录电路

考虑到板子尺寸的限制以及器件的选型,这里采用UCB转串口芯片CH340,在USB供电的同时,又可通过串口进行程序的烧录,一路双用。

VCC直接作为5V电源输入,在串口芯片那边有一个保险丝12V/1000mA的保险丝进行保护,并通过电容进行滤波与稳压,来防止热插拔效应的干扰。

拨动电源开关,可看到电源指示灯亮起。


51主控芯片附近电路

主控芯片选取的是STC90C51RD+,国产51MCU芯片,简单易学,入门容易。工作电压:5.5V-3.4V,工作温度范围:-40-+85°C,工作频率范围:0-40MHz,用户应用程序空间4K,片上集成1280字节RAM,32个通用I/O口,4个外部中断。基本可以满足项目要求,实现对应的功能。


复位电路

采用阻容复位电路,电容C7是10μF,电阻R7是10K。


晶振电路

使用外部晶振12MHz,此时电容选取47pF。


AD采样电路

采用PCF8591这款芯片,该芯片具有4路模拟输入通道,8位AD采样精度,以及一个DA输出。

电路部分,使用两个电位器作为采样目标,通过改变电位器阻值来改变采样的数值,并通过开关来切换AD采样的通道。

把采集到的数据存放至8位的数据寄存器中,通过I2C总线传输到51主控芯片中。

利用该芯片的一个DA输出通道,可以连接一个LED的灯,转动电位器,可以观察灯的的亮度发生细微的变化,更加的直观。


数码管驱动电路

为了便于调试,这里使用8位共阴数码管进行实时显示,数码管驱动芯片选择74HC573,作为最常见的锁存芯片,在这里一个作为位锁存,一个作为段锁存。

数码管这里采用的是共阴数码管,两个4位的数码管,合成一个8位的数码管。


CAN总线通讯电路

根据实际的项目需求,CAN总线电路采用SJA1000作为CAN控制器,PCA82C250作为CAN总线收发器。

但因单独购买芯片没有相关渠道,转而选择集成化的CAN通讯模块。


主要器件选型

器件选型方面本着有现成的就使用现成的、能简单实现的功能就不做的复杂的原则。器件选型上可以分为两类:芯片类,其他电子器件类。


芯片类

51主控芯片STC90C516RD+

USB转串口芯片CH340G

AD采样芯片PCF8591

锁存器芯片74HC573

CAN通讯模块


其他器件

开关

按键

四位共阴数码管

晶振

供电USB接口

电阻、电容、二极管、LED


程序设计原理


程序框架

整个程序框架包含了:main.c、display.c、i2c.c、uart.c、delay.c。

主函数模块main.c,延时函数模块delay.c、数码管驱动函数模块display.c、i2c驱动函数模块i2c.c、串口通讯函数模块uart.c。相关函数都用.h文件进行封装,提供相关的接口,供主函数调用。


主函数模块main.c

/*
Date:2022.03.22
Author:
Target:主函数
*/
#include
#include "i2c.h"
#include "delay.h"
#include "display.h"
#include
#define AddWr 0x90 //写数据地址
#define AddRd 0x91 //读数据地址
extern bit ack;
bit ReadADFlag;
unsigned char VoltData[5]; //存储电压的全局变量,用于串口通讯
unsigned char numback(unsigned char s);
unsigned char ReadADC(unsigned char Chl);
bit WriteDAC(unsigned char dat);
/*------------------------------------------------
主程序
------------------------------------------------*/
main()
{
unsigned char num=0,num0=0,num1=0,num2=0,num3=0,i;
Init_Timer0();
DelayMs(20);

InitUART();
while (1) //主循环
{
if(ReadADFlag)
{
ReadADFlag=0;
//连续读5次,输入通道后多读几次,取最后一次值,以便读出稳定值
for(i=0;i<5;i++)
num0=ReadADC(0);
num0=num0*5*10/256;// x10表示把实际值扩大10,如4.5 变成 45 方便做下一步处理 x5 表示基准电压5V
TempData[0]=dofly_DuanMa[num0/10]|0x80;
TempData[1]=dofly_DuanMa[num0%10];

for(i=0;i<5;i++)
num1=ReadADC(1);
num1=num1*5*10/256; // x10表示把实际值扩大10,如4.5 变成 45 方便做下一步处理
TempData[2]=dofly_DuanMa[num1/10]|0x80;
TempData[3]=dofly_DuanMa[num1%10];
for(i=0;i<5;i++)
num2=ReadADC(2);
num2=num2*5*10/256; // x10表示把实际值扩大10,如4.5 变成 45 方便做下一步处理
TempData[4]=dofly_DuanMa[num2/10]|0x80;
TempData[5]=dofly_DuanMa[num2%10];
for(i=0;i<5;i++)
num=ReadADC(3);
num3=num3*5*10/256; // x10表示把实际值扩大10,如4.5 变成 45 方便做下一步处理
TempData[6]=dofly_DuanMa[num3/10]|0x80;
TempData[7]=dofly_DuanMa[num3%10];
//主循环中添加其他需要一直工作的程序

VoltData[0]=num0;
VoltData[1]=num1;
VoltData[2]=num2;
VoltData[3]=num3;
VoltData[4]=0xff;

SendStr1(VoltData);
DelayMs(240);//延时循环发送
DelayMs(240);
}
/*
SendStr1(VoltData);
DelayMs(240);//延时循环发送
DelayMs(240);
*/
}
}
/*------------------------------------------------
读AD转值程序
输入参数 Chl 表示需要转换的通道,范围从0-3
返回值范围0-255
------------------------------------------------*/
unsigned char ReadADC(unsigned char Chl)
{
unsigned char Val;
Start_I2c(); //启动总线
SendByte(AddWr); //发送器件地址
if(ack==0)return(0);
SendByte(Chl); //发送器件子地址
if(ack==0)return(0);
Start_I2c();
SendByte(AddRd);
if(ack==0)return(0);
Val=RcvByte();
NoAck_I2c(); //发送非应位
Stop_I2c(); //结束总线
return(Val);
}
/*------------------------------------------------
写入DA转换数值
输入参数:dat 表示需要转换的DA数值,范围是0-255
------------------------------------------------*/
/*bit WriteDAC(unsigned char dat)
{
Start_I2c(); //启动总线
SendByte(AddWr); //发送器件地址
if(ack==0)return(0);
SendByte(0x40); //发送器件子地址
if(ack==0)return(0);
SendByte(dat); //发送数据
if(ack==0)return(0);
Stop_I2c();
}*/
```c
##### 延时函数模块delay.c
```c
/*
Date:2022.03.22
Author:
Target:提供延时
*/
#include
//uS延时函数,输入参数t,无返回值,延时时间=t*2+5 uS
void DelayUs2x(unsigned int t)
{
while(--t);
}
//mS延时函数,输入参数t,无返回值,延时时间1mS
void DelayMs(unsigned int t)
{
while(t--)
{
DelayUs2x(245);
DelayUs2x(245);
}
}

#ifndef _DELAY_H_
#define _DELAY_H_
void DelayUs2x(unsigned int t);
void DelayMs(unsigned int t);
#endif

数码管驱动函数模块display.c

/*
Date:2022.03.22
Author:
Target:数码管驱动
*/
#include
#include
#define DataPort P0 //定义数据端口 程序中遇到DataPort 则用P0 替换
//sbit LATCH1 = P2^0;//定义锁存使能端口 段锁存
//sbit LATCH2 = P2^3;// 位锁存
extern bit ReadADFlag;//extern声明,不是定义,外部变量
unsigned char code dofly_DuanMa[10] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};// 显示段码值0~9
unsigned char code dofly_WeiMa[] = {0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码
unsigned char TempData[8]; //存储显示值的全局变量
/*
显示函数,动态扫描数码管,
参数FirstBit 表示需要显示的是第一位,比如0就是从第一个数码管显示,2就是从第三个数码管显示,
参数Num表示要显示的位数,也就是几个数码管显示,如要显示两位数,就应该输入2
*/
void Display(unsigned char FirstBit,unsigned char Num)
{
static unsigned char i = 0;
DataPort=0; //清空数据,防止有交替重影
LATCH1=1; //段锁存
LATCH1=0;
DataPort=dofly_WeiMa[i+FirstBit]; //取位码
LATCH2=1; //位锁存
LATCH2=0;
DataPort=TempData[i]; //取显示数据,段码
LATCH1=1; //段锁存
LATCH1=0;
i++;
if(i==Num)
i=0;
}
/* 定时器初始化 */
void Init_Timer0(void)
{
TMOD |= 0x01; //使用模式1,16位定时器,使用"|"符号可以在使用多个定时器时不受影响
EA=1; //总中断打开
ET0=1; //定时器中断打开
TR0=1; //定时器开关打开
}
/* 定时器中断子程序 */
void Init_Timer0_isr(void) interrupt 1
{
static unsigned int num;
TH0=(65536-2000)/256; //重新赋值 高位 低位
TL0=(65536-2000)%256; //可以理解成,提前减去2000,就是2ms倒计时
Display(0,8); // 调用数码管扫描
num++;
if(num==50) //中断50次,大致100ms
{
num = 0;
ReadADFlag=1;//AD标志位1
}
}

#include
#ifndef __DISPLAY_H__
#define __DISPLAY_H__
#define DataPort P0 //定义数据端口 程序中遇到DataPort 则用P0 替换
sbit LATCH1=P2^2;//定义锁存使能端口 段锁存
sbit LATCH2=P2^3;// 位锁存
extern unsigned char TempData[8]; //存储显示值的全局变量
extern unsigned char code dofly_DuanMa[10];
void Display(unsigned char FirstBit,unsigned char Num);
void Init_Timer0(void);
#endif

i2c驱动函数模块i2c.c

/*
Date:2022.03.22
Author:
Target:i2c驱动
*/
#include
#include
#define _Nop() _nop_() //定义空指令 一个空指令大致为1us
bit ack;
sbit SDA=P2^1;//数据线
sbit SCL=P2^0;//时钟线
/* 启动i2c总线 */
void Start_I2c()
{
SDA=1; //发送起始条件的数据信号
_Nop();
SCL=1;
_Nop(); //起始条件建立时间大于4.7us,延时
_Nop();
_Nop();
_Nop();
_Nop();
SDA=0; //发送起始信号
_Nop(); //起始条件锁定时间大于4μ
_Nop();
_Nop();
_Nop();
_Nop();
SCL=0; //钳住I2C总线,准备发送或接收数据
_Nop();
_Nop();
}
/* 关闭i2c总线 */
void Stop_I2c()
{
SDA=0; //发送结束条件的数据信号
_Nop(); //发送结束条件的时钟信号
SCL=1; //结束条件建立时间大于4μ
_Nop();
_Nop();
_Nop();
_Nop();
_Nop();
SDA=1; //发送I2C总线结束信号
_Nop();
_Nop();
_Nop();
_Nop();
}
/*
发送字节数据
将数据c发送出去,可以是地址,也可以是数据,发完后等待应答,并对
此状态位进行操作.(不应答或非应答都使ack=0 假)
发送数据正常,ack=1; ack=0表示被控器无应答或损坏。
*/
void SendByte(unsigned char c)
{
unsigned char BitCnt;

for(BitCnt=0;BitCnt<8;BitCnt++) //要传送的数据长度为8位
{
if((c< SDA=1; //判断发送位
else SDA=0;
_Nop();
SCL=1; //置时钟线为高,通知被控器开始接收数据位
_Nop();
_Nop(); //保证时钟高电平周期大于4μ
_Nop();
_Nop();
_Nop();
SCL=0;
}

_Nop();
_Nop();
SDA=1; //8位发送完后释放数据线,准备接收应答位
_Nop();
_Nop();
SCL=1;
_Nop();
_Nop();
_Nop();
if(SDA==1)
ack=0;
else ack=1; //判断是否接收到应答信号
SCL=0;
_Nop();
_Nop();
}
/*
接受字节数据
用来接收从器件传来的数据,并判断总线错误(不发应答信号),发完后请用应答函数。
*/
unsigned char RcvByte()
{
unsigned char retc;
unsigned char BitCnt;

retc=0;
SDA=1; //置数据线为输入方式
for(BitCnt=0;BitCnt<8;BitCnt++)
{
_Nop();
SCL=0; //置时钟线为低,准备接收数据位
_Nop();
_Nop(); //时钟低电平周期大于4.7us
_Nop();
_Nop();
_Nop();
SCL=1; //置时钟线为高使数据线上数据有效
_Nop();
_Nop();
retc=retc<<1;
if(SDA==1)retc=retc+1; //读数据位,接收的数据位放入retc中
_Nop();
_Nop();
}
SCL=0;
_Nop();
_Nop();
return(retc);
}
/*----------------------------------------------------------------
应答子函数
原型: void Ack_I2c(void);

----------------------------------------------------------------*/
/*void Ack_I2c(void)
{

SDA=0;
_Nop();
_Nop();
_Nop();
SCL=1;
_Nop();
_Nop(); //时钟低电平周期大于4μ
_Nop();
_Nop();
_Nop();
SCL=0; //清时钟线,钳住I2C总线以便继续接收
_Nop();
_Nop();
}*/
/*----------------------------------------------------------------
非应答子函数
原型: void NoAck_I2c(void);

----------------------------------------------------------------*/
void NoAck_I2c(void)
{

SDA=1;
_Nop();
_Nop();
_Nop();
SCL=1;
_Nop();
_Nop(); //时钟低电平周期大于4μ
_Nop();
_Nop();
_Nop();
SCL=0; //清时钟线,钳住I2C总线以便继续接收
_Nop();
_Nop();
}

/*----------------------------------------------------------------
向无子地址器件发送字节数据函数
函数原型: bit ISendByte(unsigned char sla,ucahr c);
功能: 从启动总线到发送地址,数据,结束总线的全过程,从器件地址sla.
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
/*bit ISendByte(unsigned char sla,unsigned char c)
{
Start_I2c(); //启动总线
SendByte(sla); //发送器件地址
if(ack==0)return(0);
SendByte(c); //发送数据
if(ack==0)return(0);
Stop_I2c(); //结束总线
return(1);
}
*/
/*----------------------------------------------------------------
向有子地址器件发送多字节数据函数
函数原型: bit ISendStr(unsigned char sla,unsigned char suba,ucahr *s,unsigned char no);
功能: 从启动总线到发送地址,子地址,数据,结束总线的全过程,从器件
地址sla,子地址suba,发送内容是s指向的内容,发送no个字节。
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
/*bit ISendStr(unsigned char sla,unsigned char suba,unsigned char *s,unsigned char no)
{
unsigned char i;
for(i=0;i {
Start_I2c(); //启动总线
SendByte(sla); //发送器件地址
if(ack==0)return(0);
SendByte(suba); //发送器件子地址
if(ack==0)return(0);

SendByte(*s); //发送数据
if(ack==0)return(0);
Stop_I2c(); //结束总线
DelayMs(1); //必须延时等待芯片内部自动处理数据完毕
s++;
suba++;
}
return(1);
}
*/
/*----------------------------------------------------------------
向无子地址器件读字节数据函数
函数原型: bit IRcvByte(unsigned char sla,ucahr *c);
功能: 从启动总线到发送地址,读数据,结束总线的全过程,从器件地
址sla,返回值在c.
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
/*bit IRcvByte(unsigned char sla,unsigned char *c)
{
Start_I2c(); //启动总线
SendByte(sla+1); //发送器件地址
if(ack==0)return(0);
*c=RcvByte(); //读取数据
NoAck_I2c(); //发送非就答位
Stop_I2c(); //结束总线
return(1);
}
*/
/*----------------------------------------------------------------
向有子地址器件读取多字节数据函数
函数原型: bit ISendStr(unsigned char sla,unsigned char suba,ucahr *s,unsigned char no);
功能: 从启动总线到发送地址,子地址,读数据,结束总线的全过程,从器件
地址sla,子地址suba,读出的内容放入s指向的存储区,读no个字节。
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
/*bit IRcvStr(unsigned char sla,unsigned char suba,unsigned char *s,unsigned char no)
{
unsigned char i;
Start_I2c(); //启动总线
SendByte(sla); //发送器件地址
if(ack==0)return(0);
SendByte(suba); //发送器件子地址
if(ack==0)return(0);
Start_I2c();
SendByte(sla+1);
if(ack==0)return(0);
for(i=0;i {
*s=RcvByte(); //发送数据
Ack_I2c(); //发送就答位
s++;
}
*s=RcvByte();
NoAck_I2c(); //发送非应位
Stop_I2c(); //结束总线
return(1);
}
*/


#ifndef __I2C_H__
#define __I2C_H__

#include //头文件的包含
#include
#define _Nop() _nop_() //定义空指令
/*------------------------------------------------
启动总线
------------------------------------------------*/
void Start_I2c();
/*------------------------------------------------
结束总线
------------------------------------------------*/
void Stop_I2c();
/*----------------------------------------------------------------
字节数据传送函数
函数原型: void SendByte(unsigned char c);
功能: 将数据c发送出去,可以是地址,也可以是数据,发完后等待应答,并对
此状态位进行操作.(不应答或非应答都使ack=0 假)
发送数据正常,ack=1; ack=0表示被控器无应答或损坏。
------------------------------------------------------------------*/
void SendByte(unsigned char c);
/*----------------------------------------------------------------
字节数据传送函数
函数原型: unsigned char RcvByte();
功能: 用来接收从器件传来的数据,并判断总线错误(不发应答信号),
发完后请用应答函数。
------------------------------------------------------------------*/
unsigned char RcvByte();
/*----------------------------------------------------------------
应答子函数
原型: void Ack_I2c(void);
----------------------------------------------------------------*/
void Ack_I2c(void);
/*----------------------------------------------------------------
非应答子函数
原型: void NoAck_I2c(void);
----------------------------------------------------------------*/
void NoAck_I2c(void);
/*----------------------------------------------------------------
向无子地址器件发送字节数据函数
函数原型: bit ISendByte(unsigned char sla,ucahr c);
功能: 从启动总线到发送地址,数据,结束总线的全过程,从器件地址sla.
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
bit ISendByte(unsigned char sla,unsigned char c);
/*----------------------------------------------------------------
向有子地址器件发送多字节数据函数
函数原型: bit ISendStr(unsigned char sla,unsigned char suba,ucahr *s,unsigned char no);
功能: 从启动总线到发送地址,子地址,数据,结束总线的全过程,从器件
地址sla,子地址suba,发送内容是s指向的内容,发送no个字节。
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
bit ISendStr(unsigned char sla,unsigned char suba,unsigned char *s,unsigned char no);
/*----------------------------------------------------------------
向无子地址器件读字节数据函数
函数原型: bit IRcvByte(unsigned char sla,ucahr *c);
功能: 从启动总线到发送地址,读数据,结束总线的全过程,从器件地
址sla,返回值在c.
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
bit IRcvByte(unsigned char sla,unsigned char *c);
/*----------------------------------------------------------------
向有子地址器件读取多字节数据函数
函数原型: bit ISendStr(unsigned char sla,unsigned char suba,ucahr *s,unsigned char no);
功能: 从启动总线到发送地址,子地址,读数据,结束总线的全过程,从器件
地址sla,子地址suba,读出的内容放入s指向的存储区,读no个字节。
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
bit IRcvStr(unsigned char sla,unsigned char suba,unsigned char *s,unsigned char no);
#endif

串口通讯函数模块uart.c

#include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义
#include "delay.h"
#include
//串口初始化
void InitUART (void)
{
SCON = 0x50; // SCON: 模式 1, 8-bit UART, 使能接收
TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit 重装
TH1 = 0xFD; // TH1: 重装值 9600 波特率 晶振 11.0592MHz
TR1 = 1; // TR1: timer 1 打开
EA = 1; //打开总中断
//ES = 1; //打开串口中断
}
//发送一个字节
void SendByte1(unsigned char dat)
{
SBUF = dat;
while(!TI);
TI = 0;
}
//发送一个字符串
void SendStr1(unsigned char *s)
{
while(*s!=0xff)//

#include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义
#include "delay.h"
#include
//串口初始化
void InitUART (void)
{
SCON = 0x50; // SCON: 模式 1, 8-bit UART, 使能接收
TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit 重装
TH1 = 0xFD; // TH1: 重装值 9600 波特率 晶振 11.0592MHz
TR1 = 1; // TR1: timer 1 打开
EA = 1; //打开总中断
//ES = 1; //打开串口中断
}
//发送一个字节
void SendByte1(unsigned char dat)
{
SBUF = dat;
while(!TI);
TI = 0;
}
//发送一个字符串
void SendStr1(unsigned char *s)
{
while(*s!=0xff)// \0 表示字符串结束标志,通过检测是否字符串末尾
{
SendByte1(*s);
s++;
}
}
表示字符串结束标志,通过检测是否字符串末尾
{
SendByte1(*s);
s++;
}
}

#ifndef __uart_H__
#define __uart_H__
void InitUART (void);
void SendByte1(unsigned char dat);
void SendStr1(unsigned char *s);
#endif

上位机部分程序

namespace 微机上位机
{
public partial class Form1 : Form
{
//初始化
private void Form1_Load(object sender, EventArgs e)
{
comboBox1.Text = "COM1";
comboBox2.Text = "9600";
serialPort1.DataReceived += new System.IO.Ports.SerialDataReceivedEventHandler(senddata);
}
//接受数据
private void senddata(object sender, System.IO.Ports.SerialDataReceivedEventArgs e)
{
length = serialPort1.BytesToRead; //获取缓冲区字节数
serialPort1.Read(R_data, 0, length);
this.Invoke(new EventHandler(display));
}
//显示数据
private void display(object sender, EventArgs e)
{
double[] sample = new double[8];
sample[0] = (Convert.ToDouble(R_data[0])) / 10;
sample[1] = (Convert.ToDouble(R_data[1])) / 10;
sample[2] = (Convert.ToDouble(R_data[2])) / 10;
sample[3] = (Convert.ToDouble(R_data[3])) / 10;
sample[4] = (Convert.ToDouble(R_data[4])) / 10;
sample[5] = (Convert.ToDouble(R_data[5])) / 10;
sample[6] = (Convert.ToDouble(R_data[6])) / 10;
sample[7] = (Convert.ToDouble(R_data[7])) / 10;
textBox1.Text = sample[0].ToString();
textBox2.Text = sample[1].ToString();
textBox3.Text = sample[2].ToString();
textBox4.Text = sample[3].ToString();
textBox5.Text = sample[0].ToString();
textBox6.Text = sample[1].ToString();
textBox7.Text = sample[2].ToString();
textBox8.Text = sample[3].ToString();
textBox9.Text = sample[4].ToString();
textBox10.Text = sample[5].ToString();
textBox11.Text = sample[6].ToString();
textBox12.Text = sample[7].ToString();
ovalShape1.FillColor = Color.LightGreen;
ovalShape2.FillColor = Color.LightGreen;
ovalShape3.FillColor = Color.LightGreen;
ovalShape4.FillColor = Color.LightGreen;
ovalShape5.FillColor = Color.LightGreen;
ovalShape6.FillColor = Color.LightGreen;
ovalShape7.FillColor = Color.LightGreen;
ovalShape8.FillColor = Color.LightGreen;
ovalShape9.FillColor = Color.LightGreen;
ovalShape10.FillColor = Color.LightGreen;
ovalShape11.FillColor = Color.LightGreen;
ovalShape12.FillColor = Color.LightGreen;

}

//开启串口
private void button1_Click_1(object sender, EventArgs e)
{
R_Flag = 1;
serialPort1.ReceivedBytesThreshold = 4;
serialPort1.RtsEnable = true;
if (serialPort1.IsOpen)
{
try
{
timer1.Stop();
serialPort1.Close();
button1.Text = "打开串口";
}
catch
{
MessageBox.Show("端口错误", "Error");
button1.Text = "关闭串口";
}
}
else
{
try
{
serialPort1.PortName = comboBox1.Text;
serialPort1.BaudRate = Convert.ToInt16(comboBox2.Text, 10);
serialPort1.Parity = System.IO.Ports.Parity.None;
serialPort1.StopBits = System.IO.Ports.StopBits.One;
serialPort1.DataBits = 8;
serialPort1.Open();
timer1.Start();
button1.Text = "关闭串口";
}
catch
{
MessageBox.Show("端口错误", "Error");
serialPort1.Close();
button1.Text = "打开串口";
}
}
}
//配置报文长度
private void button2_Click(object sender, EventArgs e)
{
serialPort1.ReceivedBytesThreshold = Convert.ToInt16(textBox13.Text, 10);
}
}
}

关键程序设计


延时模块

12MHz晶振,一个指令周期大约是1μs,这里封装了两个函数,一个μs级别的,一个ms级别的。

//uS延时函数,输入参数t,无返回值,延时时间=t*2+5 uS
void DelayUs2x(unsigned int t)
{
while(--t);
}
//mS延时函数,输入参数t,无返回值,延时时间1mS
void DelayMs(unsigned int t)
{
while(t--)
{
DelayUs2x(245);
DelayUs2x(245);
}
}

数码管驱动模块


段码位码的的编写

unsigned char code dofly_DuanMa[10] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};// 显示段码值0~9
unsigned char code dofly_WeiMa[] = {0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码
unsigned char TempData[8]; //存储显示值的全局变量

这里是使用到了一个小工具:段码值分别编写0-9的数值。

位码则是8位,比如fd代表1111 1101

使用的芯片属于锁存器,打开或者关闭制定锁存器,就可实现数据的显示。


定时器模块的调用

/* 定时器初始化 */
void Init_Timer0(void)
{
TMOD |= 0x01; //使用模式1,16位定时器,使用"|"符号可以在使用多个定时器时不受影响
EA=1; //总中断打开
ET0=1; //定时器中断打开
TR0=1; //定时器开关打开
}
/* 定时器中断子程序 */
void Init_Timer0_isr(void) interrupt 1
{
static unsigned int num;
TH0=(65536-2000)/256; //重新赋值 高位 低位
TL0=(65536-2000)%256; //可以理解成,提前减去2000,就是2ms倒计时
Display(0,8); // 调用数码管扫描
num++;
if(num==50) //中断50次,大致100ms
{
num = 0;
ReadADFlag=1;//AD标志位1
}
}

定时器初始化,定时器有四个模式,这里选择模式1,十六位定时器/计数器。

把数码管扫描函数,放到中断函数中,每隔100ms扫描一次。


i2c模块的编写

数据线,时钟线,主要参考时序图,什么时候开始发送数据,什么时候结束发送数据。一个空指令是1μs。

/* 启动i2c总线 */
void Start_I2c()
{
SDA=1; //发送起始条件的数据信号
_Nop();
SCL=1;
_Nop(); //起始条件建立时间大于4.7us,延时
_Nop();
_Nop();
_Nop();
_Nop();
SDA=0; //发送起始信号
_Nop(); //起始条件锁定时间大于4μ
_Nop();
_Nop();
_Nop();
_Nop();
SCL=0; //钳住I2C总线,准备发送或接收数据
_Nop();
_Nop();
}
/* 关闭i2c总线 */
void Stop_I2c()
{
SDA=0; //发送结束条件的数据信号
_Nop(); //发送结束条件的时钟信号
SCL=1; //结束条件建立时间大于4μ
_Nop();
_Nop();
_Nop();
_Nop();
_Nop();
SDA=1; //发送I2C总线结束信号
_Nop();
_Nop();
_Nop();
_Nop();
}

串口通讯模块的编写

发送字符串,要在最后设置一个校验位,就是告诉计算机,这次的数据发完了,停下吧。

//发送一个字符串
void SendStr1(unsigned char *s)
{
while(*s!=0xff)// ff表示数据发完了
{
SendByte1(*s);
s++;
}
}

主函数模块的数据数据处理

读取到的数据是一个0~256(二的八次方)之间的数,参考电压这里是5V,所以要把读取到的数带入公式中计算,然后分小数点前的数据,因为要在数码管显示,所以|0x80,加上小数点,小数点后直接保留就好。

//连续读5次,输入通道后多读几次,取最后一次值,以便读出稳定值
for(i=0;i<5;i++)
num0=ReadADC(0);
num0=num0*5*10/256;// x10表示把实际值扩大10,如4.5 变成 45 方便做下一步处理 x5 表示基准电压5V
TempData[0]=dofly_DuanMa[num0/10]|0x80;
TempData[1]=dofly_DuanMa[num0%10];

通讯部分数据处理,十六进制的数据报文。

VoltData[0]=num0;
VoltData[1]=num1;
VoltData[2]=num2;
VoltData[3]=num3;
VoltData[4]=0xff;

SendStr1(VoltData);
DelayMs(240);//延时循环发送
DelayMs(240);


推荐阅读
  • 本文介绍了《中秋夜作》的翻译及原文赏析,以及诗人当代钱钟书的背景和特点。通过对诗歌的解读,揭示了其中蕴含的情感和意境。 ... [详细]
  • 本文详细介绍了SQL日志收缩的方法,包括截断日志和删除不需要的旧日志记录。通过备份日志和使用DBCC SHRINKFILE命令可以实现日志的收缩。同时,还介绍了截断日志的原理和注意事项,包括不能截断事务日志的活动部分和MinLSN的确定方法。通过本文的方法,可以有效减小逻辑日志的大小,提高数据库的性能。 ... [详细]
  • 搭建Windows Server 2012 R2 IIS8.5+PHP(FastCGI)+MySQL环境的详细步骤
    本文详细介绍了搭建Windows Server 2012 R2 IIS8.5+PHP(FastCGI)+MySQL环境的步骤,包括环境说明、相关软件下载的地址以及所需的插件下载地址。 ... [详细]
  • PHP图片截取方法及应用实例
    本文介绍了使用PHP动态切割JPEG图片的方法,并提供了应用实例,包括截取视频图、提取文章内容中的图片地址、裁切图片等问题。详细介绍了相关的PHP函数和参数的使用,以及图片切割的具体步骤。同时,还提供了一些注意事项和优化建议。通过本文的学习,读者可以掌握PHP图片截取的技巧,实现自己的需求。 ... [详细]
  • 关羽败走麦城时路过马超封地 马超为何没有出手救人
    对当年关羽败走麦城,恰好路过马超的封地,为啥马超不救他?很感兴趣的小伙伴们,趣历史小编带来详细的文章供大家参考。说到英雄好汉,便要提到一本名著了,没错,那就是《三国演义》。书中虽 ... [详细]
  • 本文分享了一个关于在C#中使用异步代码的问题,作者在控制台中运行时代码正常工作,但在Windows窗体中却无法正常工作。作者尝试搜索局域网上的主机,但在窗体中计数器没有减少。文章提供了相关的代码和解决思路。 ... [详细]
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • PHP设置MySQL字符集的方法及使用mysqli_set_charset函数
    本文介绍了PHP设置MySQL字符集的方法,详细介绍了使用mysqli_set_charset函数来规定与数据库服务器进行数据传送时要使用的字符集。通过示例代码演示了如何设置默认客户端字符集。 ... [详细]
  • Java序列化对象传给PHP的方法及原理解析
    本文介绍了Java序列化对象传给PHP的方法及原理,包括Java对象传递的方式、序列化的方式、PHP中的序列化用法介绍、Java是否能反序列化PHP的数据、Java序列化的原理以及解决Java序列化中的问题。同时还解释了序列化的概念和作用,以及代码执行序列化所需要的权限。最后指出,序列化会将对象实例的所有字段都进行序列化,使得数据能够被表示为实例的序列化数据,但只有能够解释该格式的代码才能够确定数据的内容。 ... [详细]
  • 橱窗设计的表现手法及其应用
    本文介绍了橱窗设计的表现手法,包括直接展示、寓意与联想、夸张与幽默等。通过对商品的折、拉、叠、挂、堆等陈列技巧,橱窗设计能够充分展现商品的形态、质地、色彩、样式等特性。同时,寓意与联想可以通过象形形式或抽象几何道具来唤起消费者的联想与共鸣,创造出强烈的时代气息和视觉空间。合理的夸张和贴切的幽默能够明显夸大商品的美的因素,给人以新颖奇特的心理感受,引起人们的笑声和思考。通过这些表现手法,橱窗设计能够有效地传达商品的个性内涵,吸引消费者的注意力。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • faceu激萌变老特效的使用方法详解
    本文介绍了faceu激萌变老特效的使用方法,包括打开faceu激萌app、点击贴纸、选择热门贴纸中的变老特效,然后对准人脸进行拍摄,即可给照片添加变老特效。操作简单,适合新用户使用。 ... [详细]
  • Android中高级面试必知必会,积累总结
    本文介绍了Android中高级面试的必知必会内容,并总结了相关经验。文章指出,如今的Android市场对开发人员的要求更高,需要更专业的人才。同时,文章还给出了针对Android岗位的职责和要求,并提供了简历突出的建议。 ... [详细]
  • 大连微软技术社区举办《.net core始于足下》活动,获得微软赛百味和易迪斯的赞助
    九月十五日,大连微软技术社区举办了《.net core始于足下》活动,共有51人报名参加,实际到场人数为43人,还有一位专程从北京赶来的同学。活动得到了微软赛百味和易迪斯的赞助,场地也由易迪斯提供。活动中大家积极交流,取得了非常成功的效果。 ... [详细]
  • 给定一个二叉树,要求随机选择树上的一个节点。解法:遍历树的过程中,随机选择一个节点即可。具体做法参看:从输入 ... [详细]
author-avatar
那一年2502931247
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有