热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[论文笔记]CrowdsourcingTranslation:ProfessionalQualityfromNon-Professionals(ACL,2011)

Time:4hoursTimespan:Apr15–May3,2012OmarZaidan,ChrisCallison-Burch:CrowdsourcingTra



Time:    4 hours
Timespan: Apr 15 – May 3, 2012
Omar Zaidan, Chris Callison-Burch: Crowdsourcing Translation: Professional Quality from Non-Professionals. ACL 2011: 1220-1229


 


    作者Omar Zaidan是Johns Hopkins University的博士生,主要对NLP感兴趣,专注于text classification and machine translation,编写过一个软件MAISE(Java编写,帮助在mTurk上创建任务、上传文件等)。


下面是主要内容:


1. 本文介绍了一种基于众包的翻译流程,通过redundancy、post edit、rank等手段,来获得质量接近专业水准的译文。


2. (S3) 介绍了整个流程



  • (S3.1) 本文使用的数据集是"Urdu-to-English 2009 NITS Evaluation", 包含1792句Urdu语,每句Urdu语有四句参考翻译(由专业人士提供)。

  • (S3.2) 作者将这些句子放到了mTurks上,任务是获取这些句子的英文翻译,进行了两轮:第一轮的任务是翻译整个文档,每句Urdu语获得了一份翻译;第二轮进行了改进,拆分了文档,每个任务是翻译10句,并且这些待翻译的句子是以图片的形式展示给worker,这一轮每句Urdu语获得了三份翻译。

  • (S3.3) 然后进入Post-editing和Ranking(没找到文中具体描述如何ranking的文字)的步骤,这个步骤的任务也是在mTurk上以任务形式完成,但要求US-based worker才能参与。第一轮获得的翻译被编辑一次,第二轮获得的三份翻译各被编辑三次(不明白为什么要这样区分处理),这样对于一句Urdu语,总共就得到了10份编辑后的翻译和4份初始翻译。


3. 通过(S3)介绍的流程,一份Urdu语获得了14份翻译,而在(S4)中便在介绍如果通过建立恰当的模型以便从这14份中找出最佳的一份。


作者在(S4.1)中介绍了一些features(分为三类):


 


































































类别 Feature名称 描述
Sentence-level Language model features 一种判断句子质量高低的属性,具体不太清楚 (use a 5-gram language model trained on the English Gigaword corpus)
Sentence-level Sentence length features 质量高的句子长度应该适中
Sentence-level Web n-gram match percentage 一种根据n-gram百分比来给句子打分的方法,具体不太清楚(使用了Google N-Gram Database)
Sentence-level Web n-gram geometric average 一种根据n-gram匹配百分比来给句子进行打分的方法,具体不太清楚
Sentence-level Edit rate to other translations edit rate distance from the other translation(使用了TER metric)
Worker-level Aggregate features 该worker所有translation的sentence-level feature值计算而得
Worker-level Language abilities 是否母语,使用年限等
Worker-level Worker location 所在地
Ranking Average rank 根据ranking label而来
Ranking Is-Best percentage 根据ranking label而来
Ranking Is-Better percentage 根据ranking label而来


打分的函数方法是这样定义的:image


其中f(ti,j)是上面定义的feature,w是权重向量, (S4.2)介绍如何调试出较优的权重值(使用了"linear search method of Och")。这个打分方法算是一种多属性决策方法吧,比较容易理解。


4.  其他可关注的信息
(S1)中提到了SMT(Statistical Machine Translation),对于有大量配对语句的语言来说,这种翻译技术会比较有效。
(S2)中提到mTurks上的一个不足之处是不能提供Turkers的个人背景(比如教育背景、母语等信息)。





推荐阅读
  • 本文详细介绍了如何使用 Yii2 的 GridView 组件在列表页面实现数据的直接编辑功能。通过具体的代码示例和步骤,帮助开发者快速掌握这一实用技巧。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 深入理解Tornado模板系统
    本文详细介绍了Tornado框架中模板系统的使用方法。Tornado自带的轻量级、高效且灵活的模板语言位于tornado.template模块,支持嵌入Python代码片段,帮助开发者快速构建动态网页。 ... [详细]
  • PHP 5.2.5 安装与配置指南
    本文详细介绍了 PHP 5.2.5 的安装和配置步骤,帮助开发者解决常见的环境配置问题,特别是上传图片时遇到的错误。通过本教程,您可以顺利搭建并优化 PHP 运行环境。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • Python自动化处理:从Word文档提取内容并生成带水印的PDF
    本文介绍如何利用Python实现从特定网站下载Word文档,去除水印并添加自定义水印,最终将文档转换为PDF格式。该方法适用于批量处理和自动化需求。 ... [详细]
  • Explore a common issue encountered when implementing an OAuth 1.0a API, specifically the inability to encode null objects and how to resolve it. ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 本文详细介绍了如何解决Uploadify插件在Internet Explorer(IE)9和10版本中遇到的点击失效及JQuery运行时错误问题。通过修改相关JavaScript代码,确保上传功能在不同浏览器环境中的一致性和稳定性。 ... [详细]
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
  • 本文介绍了在使用Visual Studio 2015进行项目开发时,遇到类向导弹出“异常来自 HRESULT:0x8CE0000B”错误的解决方案。通过具体步骤和实践经验,帮助开发者快速排查并解决问题。 ... [详细]
  • 解读MySQL查询执行计划的详细指南
    本文旨在帮助开发者和数据库管理员深入了解如何解读MySQL查询执行计划。通过详细的解析,您将掌握优化查询性能的关键技巧,了解各种访问类型和额外信息的含义。 ... [详细]
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
author-avatar
再体验初体验g_154
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有