结合免费类型

 Ms丶娇丶 发布于 2023-01-30 22:24

我最近一直在教自己关于免费套餐中的Freemonad ,但我遇到了一个问题.我想为不同的库提供不同的免费monad,基本上我想为不同的上下文构建DSL,但我也希望能够将它们组合在一起.举个例子:

{-# LANGUAGE DeriveFunctor #-}
module TestingFree where

import Control.Monad.Free

data BellsF x
    = Ring x
    | Chime x
    deriving (Functor, Show)

type Bells = Free BellsF

data WhistlesF x
    = PeaWhistle x
    | SteamWhistle x
    deriving (Functor, Show)

type Whistles = Free WhistlesF

ring :: Bells ()
ring = liftF $ Ring ()

chime :: Bells ()
chime = liftF $ Chime ()

peaWhistle :: Whistles ()
peaWhistle = liftF $ PeaWhistle ()

steamWhistle :: Whistles ()
steamWhistle = liftF $ SteamWhistle ()


playBells :: Bells r -> IO r
playBells (Pure r)         = return r
playBells (Free (Ring x))  = putStrLn "RingRing!" >> playBells x
playBells (Free (Chime x)) = putStr "Ding-dong!" >> playBells x

playWhistles :: Whistles () -> IO ()
playWhistles (Pure _)                = return ()
playWhistles (Free (PeaWhistle x))   = putStrLn "Preeeet!" >> playWhistles x
playWhistles (Free (SteamWhistle x)) = putStrLn "Choo-choo!" >> playWhistles x

现在,我希望能够创建一个类型BellsAndWhistles,让我的功能结合两者BellsWhistles没有太多的精力.

由于问题是组合monad,我的第一个想法是查看Control.Monad.Trans.Free模块以获得快速简便的解决方案.不幸的是,有一些稀疏的例子,没有一个显示我想做的事情.此外,似乎堆叠两个或更多免费monad不起作用,因为MonadFree具有功能依赖性m -> f.从本质上讲,我希望能够编写如下代码:

newtype BellsAndWhistles m a = BellsAndWhistles
    { unBellsAndWhistles :: ???
    } deriving
        ( Functor
        , Monad
        -- Whatever else needed
        )

noisy :: Monad m => BellsAndWhistles m ()
noisy = do
    lift ring
    lift peaWhistle
    lift chime
    lift steamWhistle

play :: BellsAndWhistles IO () -> IO ()
play bellsNwhistles = undefined

但是以这种方式Bells并且Whistles可以存在于单独的模块中而不必了解彼此的实现.我的想法是,我可以为不同的任务编写独立模块,每个模块都实现自己的DSL,然后根据需要将它们组合成"更大"的DSL.是否有捷径可寻?

作为奖励,能够利用play*已经编写的不同功能是非常好的,这样我就可以将它们交换出来.我希望能够使用一个免费的解释器进行调试,另一个用于生产,显然可以选择单独调试哪个DSL.

2 个回答
  • 这是一个基于纸张数据类型单点的答案,除了没有类型类.我建议阅读那篇论文.

    诀窍在于,不是为Bells和编写解释器,而是Whistles为他们的单个函子步骤定义解释器,BellsF并且WhistlesF像这样:

    playBellsF :: BellsF (IO a) -> IO a
    playBellsF (Ring  io) = putStrLn "RingRing!"  >> io
    playBellsF (Chime io) = putStr   "Ding-dong!" >> io
    
    playWhistlesF :: WhistelsF (IO a) -> IO a
    playWhistlesF (PeaWhistle   io) = putStrLn "Preeeet!"   >> io
    playWhistlesF (SteamWhistle io) = putStrLn "choo-choo!" >> io
    

    如果您选择不将它们组合在一起,您可以将它们传递给Control.Monad.Free.iterM原来的播放功能:

    playBells    :: Bells a    -> IO a
    playBells    = iterM playBell
    
    playWhistles :: Whistles a -> IO a
    playWhistles = iterM playWhistlesF
    

    ...但是因为他们处理单个步骤,所以可以更容易地组合.您可以像这样定义一个新的组合免费monad:

    data BellsAndWhistlesF a = L (BellsF a) | R (WhistlesF a)
    

    然后把它变成一个免费的monad:

    type BellsAndWhistles = Free BellsAndWhistlesF
    

    然后你BellsAndWhistlesF就两个子解释器的一个步骤编写一个解释器:

    playBellsAndWhistlesF :: BellsAndWhistlesF (IO a) -> IO a
    playBellsAndWhistlesF (L bs) = playBellsF    bs
    playBellsAndWhistlesF (R ws) = playWhistlesF ws
    

    ...然后你通过传递到以下内容获得免费monad的解释器iterM:

    playBellsAndWhistles :: BellsAndWhistles a -> IO a
    playBellsAndWhistles = iterM playBellsAndWhistlesF
    

    因此,您的问题的答案是,组合免费monad的技巧是通过为各个函子步骤("代数")定义中间解释器来保留更多信息.这些"代数"比免费monad的解释器更适合组合.

    2023-01-30 22:35 回答
  • 加布里埃尔的回答很明显,但我认为有必要更多地强调让它全部发挥作用的事情,即两个Functors 的总和也是Functor:

    -- | Data type to encode the sum of two 'Functor's @f@ and @g@.
    data Sum f g a = InL (f a) | InR (g a)
    
    -- | The 'Sum' of two 'Functor's is also a 'Functor'.
    instance (Functor f, Functor g) => Functor (Sum f g) where
        fmap f (InL fa) = InL (fmap f fa)
        fmap f (InR ga) = InR (fmap f ga)
    
    -- | Elimination rule for the 'Sum' type.
    elimSum :: (f a -> r) -> (g a -> r) -> Sum f g a -> r
    elimSum f _ (InL fa) = f fa
    elimSum _ g (InR ga) = g ga
    

    (Edward Kmett的图书馆有这个Data.Functor.Coproduct.)

    因此,如果Functors是Freemonad 的"指令集" ,那么:

      求和函数子给你的工会这样的指令集,因而相应的组合的自由单子

      elimSum函数是一个基本规则,允许您Sum f g从解释器f和一个解释器构建一个解释器g.

    在"数据类型点菜 "技术,当你发展这个你正是洞察,这是非常值得的,同时只工作了手.

    这种Functor代数是值得学习的东西.例如:

    data Product f g a = Product (f a) (g a)
    
    -- | The 'Product' of two 'Functor's is also a 'Functor'.
    instance (Functor f, Functor g) => Functor (Product f g) where
       fmap f (Product fa ga) = Product (fmap f fa) (fmap f ga)
    
    -- | The 'Product' of two 'Applicative's is also an 'Applicative'.
    instance (Applicative f, Applicative g) => Applicative (Product f g) where
       pure x = Product (pure x) (pure x)
       Product ff gf <*> Product fa ga = Product (ff <*> fa) (gf <*> ga)
    
    
    -- | 'Compose' is to 'Applicative' what monad transformers are to 'Monad'.
    -- If your problem domain doesn't need the full power of the 'Monad' class, 
    -- then applicative composition might be a good alternative on how to combine
    -- effects.
    data Compose f g a = Compose (f (g a))
    
    -- | The composition of two 'Functor's is also a 'Functor'.
    instance (Functor f, Functor g) => Functor (Compose f g) where
       fmap f (Compose fga) = Compose (fmap (fmap f) fga)
    
    -- | The composition of two 'Applicative's is also an 'Applicative'.
    instance (Applicative f, Applicative g) => Applicative (Compose f g) where
       pure = Compose . pure . pure
       Compose fgf <*> Compose fga = Compose ((<*>) <$> fgf <*> fga)
    

    Gershom Bazerman的博客文章"Abstracting with Applicatives"扩展了关于Applicatives的这些观点,非常值得一读.


    编辑:最后我要注意的是,当人们Functor为他们的免费monad 设计他们的自定义时,事实上,隐含地他们正在使用这些技术.我将从Gabriel的"为什么免费monad重要"中拿两个例子:

    data Toy b next =
        Output b next
      | Bell next
      | Done
    
    data Interaction next =
        Look Direction (Image -> next)
      | Fire Direction next
      | ReadLine (String -> next)
      | WriteLine String (Bool -> next)
    

    所有这些都可以分析到的一些组合Product,Sum,Compose,(->)仿函数和以下三种:

    -- | Provided by "Control.Applicative"
    newtype Const b a = Const b
    
    instance Functor (Const b) where
        fmap _ (Const b) = Const b
    
    
    -- | Provided by "Data.Functor.Identity"
    newtype Identity a = Identity a
    
    instance Functor Identity where
        fmap f (Identity a) = Identity (f a)
    
    
    -- | Near-isomorphic to @Const ()@
    data VoidF a = VoidF
    
    instance Functor VoidF where
        fmap _ VoidF = VoidF
    

    因此,为简洁起见,使用以下类型的同义词:

    {-# LANGUAGE TypeOperators #-}
    
    type f :+: g = Sum f g
    type f :*: g = Product f g
    type f :.: g = Compose f g
    
    infixr 6 :+:
    infixr 7 :*:
    infixr 9 :.:
    

    ...我们可以像这样重写那些仿函数:

    type Toy b = Const b :*: Identity :+: Identity :+: VoidF
    
    type Interaction = Const Direction :*: ((->) Image :.: Identity)
                   :+: Const Direction :*: Identity
                   :+: (->) String :.: Identity
                   :+: Const String :*: ((->) Bool :.: Identity)
    

    2023-01-30 22:38 回答
撰写答案
今天,你开发时遇到什么问题呢?
立即提问
热门标签
PHP1.CN | 中国最专业的PHP中文社区 | PNG素材下载 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有