热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python使用ProjectQ生成量子算法指令集

在量子计算机领域,由于实现方案的不同,在不同的体系内的指令集其实是不一样的,并不是说OpenQASM里面的所有指令都会被支持。但是这也没有关系,因为本文将要介绍的开源量子计算模拟器

python使用ProjectQ生成量子算法指令集

输出算法操作

首先介绍一个最基本的使用方法,就是使用ProjectQ来打印量子算法中所输入的量子门操作,这里使用到了ProjectQ中的DummyEngine后端用于保存操作的指令。比如最简单的一个Bell State的制备,可以通过如下代码实现,并且打印出所保存的基本操作:

from projectq import MainEngine
from projectq.cengines import DummyEngine
from projectq.ops import H, CX, All, Measure

backend = DummyEngine(save_commands=True)
eng = MainEngine(backend=backend)

qureg = eng.allocate_qureg(2)
H | qureg[0]
CX | (qureg[0], qureg[1])

All(Measure) | qureg
eng.flush(deallocate_qubits=True)

for cmd in backend.received_commands:
    print (cmd)

运行结果如下:

Allocate | Qureg[0]
H | Qureg[0]
Allocate | Qureg[1]
CX | ( Qureg[0], Qureg[1] )
Measure | Qureg[0]
Measure | Qureg[1]
Deallocate | Qureg[0]
Deallocate | Qureg[1]

这里有一点需要注意的是,如果是单次运算,我们到Measure就可以结束了。但是如果同一个线程的任务还没有结束的话,需要在Measure之后加上一个deallocate_qubits=True的配置项,用于解除当前分配的量子比特所占用的内存。

封装的操作

在量子算法的实现中,我们可以用一些函数或者类来封装一部分的量子算法操作指令,但是这可能会导致一个问题,那就是在ProjectQ上打印出来的操作指令没有把封装的模块的内容输出出来,比如如下的案例:

from projectq import MainEngine
from projectq.cengines import DummyEngine
from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator

backend = DummyEngine(save_commands=True)
eng = MainEngine(backend=backend)

qureg = eng.allocate_qureg(3)
H | qureg[0]
CX | (qureg[0], qureg[1])
TimeEvolution(1, QubitOperator("X2 X1")) | qureg

All(Measure) | qureg
eng.flush()

for cmd in backend.received_commands:
    print (cmd)

执行结果如下:

Allocate | Qureg[0]
H | Qureg[0]
Allocate | Qureg[1]
CX | ( Qureg[0], Qureg[1] )
Measure | Qureg[0]
Allocate | Qureg[2]
exp(-1j * (1.0 X0 X1)) | Qureg[1-2]
Measure | Qureg[1]
Measure | Qureg[2]

我们发现这里的含时演化的操作算符没有被分解,而是直接打印输出了出来。但是如果在硬件系统中,只能够识别支持的指令操作,这里的含时演化操作可能并未在量子硬件体系中被实现,因此我们就需要在将指令发送给量子硬件之前,就对其进行分解。

含时演化算符的分解

这里我们直接调用ProjectQ的配置中的restrictedgateset方法进行操作分解,我们将单比特门操作的范围放宽到所有的操作,但是双比特操作只允许CX操作,并将这个配置作为engin_list配置到ProjectQ的MainEngine中:

from projectq import MainEngine
from projectq.cengines import DummyEngine
from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator
from projectq.setups import restrictedgateset

engine_list = restrictedgateset.get_engine_list(one_qubit_gates="any",two_qubit_gates=(CX,))
backend = DummyEngine(save_commands=True)
eng = MainEngine(backend=backend,engine_list=engine_list)

qureg = eng.allocate_qureg(3)
H | qureg[0]
CX | (qureg[0], qureg[1])
TimeEvolution(1, QubitOperator("X2 X1")) | qureg

All(Measure) | qureg
eng.flush(deallocate_qubits=True)

for cmd in backend.received_commands:
    print (cmd)

打印输出的结果如下:

Allocate | Qureg[0]
H | Qureg[0]
Allocate | Qureg[1]
CX | ( Qureg[0], Qureg[1] )
Measure | Qureg[0]
Allocate | Qureg[2]
H | Qureg[2]
H | Qureg[1]
CX | ( Qureg[1], Qureg[2] )
Rz(2.0) | Qureg[2]
CX | ( Qureg[1], Qureg[2] )
H | Qureg[1]
Measure | Qureg[1]
H | Qureg[2]
Measure | Qureg[2]
Deallocate | Qureg[0]
Deallocate | Qureg[1]
Deallocate | Qureg[2]

可以看到含时演化算符已经被分解并输出了出来。由于已知单比特量子门加上一个CX是一个完备的量子门集合,因此一般我们可以直接使用这个集合来进行量子门操作指令集的限制。

QFT的分解

QFT是ProjectQ中所自带支持的量子傅里叶变换的量子门操作封装,跟上一个章节中所介绍的含时演化算符类似的,我们可以用restrictedgateset来具体分解QFT算符:

from projectq import MainEngine
from projectq.cengines import DummyEngine
from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator, QFT
from projectq.setups import restrictedgateset

engine_list = restrictedgateset.get_engine_list(one_qubit_gates="any",two_qubit_gates=(CX,))
backend = DummyEngine(save_commands=True)
eng = MainEngine(backend=backend,engine_list=engine_list)

qureg = eng.allocate_qureg(3)
H | qureg[0]
CX | (qureg[0], qureg[1])
QFT | qureg

All(Measure) | qureg
eng.flush(deallocate_qubits=True)

for cmd in backend.received_commands:
    print (cmd)

输出的结果如下:

Allocate | Qureg[2]
Allocate | Qureg[1]
H | Qureg[2]
Rz(0.785398163398) | Qureg[2]
Allocate | Qureg[0]
H | Qureg[0]
CX | ( Qureg[0], Qureg[1] )
R(0.785398163398) | Qureg[1]
CX | ( Qureg[1], Qureg[2] )
Rz(11.780972450962) | Qureg[2]
CX | ( Qureg[1], Qureg[2] )
R(0.392699081698) | Qureg[0]
Rz(0.392699081698) | Qureg[2]
CX | ( Qureg[0], Qureg[2] )
H | Qureg[1]
Rz(12.173671532661) | Qureg[2]
CX | ( Qureg[0], Qureg[2] )
R(0.785398163398) | Qureg[0]
Rz(0.785398163398) | Qureg[1]
CX | ( Qureg[0], Qureg[1] )
Rz(11.780972450962) | Qureg[1]
CX | ( Qureg[0], Qureg[1] )
H | Qureg[0]
Measure | Qureg[0]
Measure | Qureg[1]
Measure | Qureg[2]
Deallocate | Qureg[1]
Deallocate | Qureg[2]
Deallocate | Qureg[0]

如果2比特门操作也不加以限制的化,ProjectQ中会自动选取最简易的分解形式:

from projectq import MainEngine
from projectq.cengines import DummyEngine
from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator, QFT
from projectq.setups import restrictedgateset

engine_list = restrictedgateset.get_engine_list(one_qubit_gates="any",two_qubit_gates="any")
backend = DummyEngine(save_commands=True)
eng = MainEngine(backend=backend,engine_list=engine_list)

qureg = eng.allocate_qureg(3)
H | qureg[0]
CX | (qureg[0], qureg[1])
QFT | qureg

All(Measure) | qureg
eng.flush(deallocate_qubits=True)

for cmd in backend.received_commands:
    print (cmd)

输出结果如下:

Allocate | Qureg[0]
Allocate | Qureg[1]
H | Qureg[0]
CX | ( Qureg[0], Qureg[1] )
Allocate | Qureg[2]
H | Qureg[2]
CR(1.570796326795) | ( Qureg[1], Qureg[2] )
CR(0.785398163397) | ( Qureg[0], Qureg[2] )
H | Qureg[1]
CR(1.570796326795) | ( Qureg[0], Qureg[1] )
H | Qureg[0]
Measure | Qureg[0]
Measure | Qureg[1]
Measure | Qureg[2]
Deallocate | Qureg[1]
Deallocate | Qureg[2]
Deallocate | Qureg[0]

可以发现使用了CR来替代CX之后,分解出来的线路会更加的简短。

总结概要

本文主要从工程实现的角度,讲解在ProjectQ开源量子计算模拟器框架中,实现量子门操作分解与输出的方法。通过这个方法,可以限制量子指令集的范围,将量子算法中不被支持的量子门操作等价(或近似地)变化到量子硬件体系所支持的量子指令集上。

以上就是python使用ProjectQ生成量子算法指令集的详细内容,更多关于python 用ProjectQ生成算法指令集的资料请关注编程笔记其它相关文章!


推荐阅读
  • 本文介绍了在Python3中如何使用选择文件对话框的格式打开和保存图片的方法。通过使用tkinter库中的filedialog模块的asksaveasfilename和askopenfilename函数,可以方便地选择要打开或保存的图片文件,并进行相关操作。具体的代码示例和操作步骤也被提供。 ... [详细]
  • Java容器中的compareto方法排序原理解析
    本文从源码解析Java容器中的compareto方法的排序原理,讲解了在使用数组存储数据时的限制以及存储效率的问题。同时提到了Redis的五大数据结构和list、set等知识点,回忆了作者大学时代的Java学习经历。文章以作者做的思维导图作为目录,展示了整个讲解过程。 ... [详细]
  • 本文讨论了一个关于cuowu类的问题,作者在使用cuowu类时遇到了错误提示和使用AdjustmentListener的问题。文章提供了16个解决方案,并给出了两个可能导致错误的原因。 ... [详细]
  • 无损压缩算法专题——LZSS算法实现
    本文介绍了基于无损压缩算法专题的LZSS算法实现。通过Python和C两种语言的代码实现了对任意文件的压缩和解压功能。详细介绍了LZSS算法的原理和实现过程,以及代码中的注释。 ... [详细]
  • 关键词:Golang, Cookie, 跟踪位置, net/http/cookiejar, package main, golang.org/x/net/publicsuffix, io/ioutil, log, net/http, net/http/cookiejar ... [详细]
  • 本文介绍了如何使用python从列表中删除所有的零,并将结果以列表形式输出,同时提供了示例格式。 ... [详细]
  • Go Cobra命令行工具入门教程
    本文介绍了Go语言实现的命令行工具Cobra的基本概念、安装方法和入门实践。Cobra被广泛应用于各种项目中,如Kubernetes、Hugo和Github CLI等。通过使用Cobra,我们可以快速创建命令行工具,适用于写测试脚本和各种服务的Admin CLI。文章还通过一个简单的demo演示了Cobra的使用方法。 ... [详细]
  • 开发笔记:实验7的文件读写操作
    本文介绍了使用C++的ofstream和ifstream类进行文件读写操作的方法,包括创建文件、写入文件和读取文件的过程。同时还介绍了如何判断文件是否成功打开和关闭文件的方法。通过本文的学习,读者可以了解如何在C++中进行文件读写操作。 ... [详细]
  • 本文介绍了在CentOS上安装Python2.7.2的详细步骤,包括下载、解压、编译和安装等操作。同时提供了一些注意事项,以及测试安装是否成功的方法。 ... [详细]
  • 学习SLAM的女生,很酷
    本文介绍了学习SLAM的女生的故事,她们选择SLAM作为研究方向,面临各种学习挑战,但坚持不懈,最终获得成功。文章鼓励未来想走科研道路的女生勇敢追求自己的梦想,同时提到了一位正在英国攻读硕士学位的女生与SLAM结缘的经历。 ... [详细]
  • 本文介绍了C#中生成随机数的三种方法,并分析了其中存在的问题。首先介绍了使用Random类生成随机数的默认方法,但在高并发情况下可能会出现重复的情况。接着通过循环生成了一系列随机数,进一步突显了这个问题。文章指出,随机数生成在任何编程语言中都是必备的功能,但Random类生成的随机数并不可靠。最后,提出了需要寻找其他可靠的随机数生成方法的建议。 ... [详细]
  • 本文讨论了如何优化解决hdu 1003 java题目的动态规划方法,通过分析加法规则和最大和的性质,提出了一种优化的思路。具体方法是,当从1加到n为负时,即sum(1,n)sum(n,s),可以继续加法计算。同时,还考虑了两种特殊情况:都是负数的情况和有0的情况。最后,通过使用Scanner类来获取输入数据。 ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 个人学习使用:谨慎参考1Client类importcom.thoughtworks.gauge.Step;importcom.thoughtworks.gauge.T ... [详细]
  • MPLS VP恩 后门链路shamlink实验及配置步骤
    本文介绍了MPLS VP恩 后门链路shamlink的实验步骤及配置过程,包括拓扑、CE1、PE1、P1、P2、PE2和CE2的配置。详细讲解了shamlink实验的目的和操作步骤,帮助读者理解和实践该技术。 ... [详细]
author-avatar
慈禧太后她妈_151
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有