热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python2个子线程等待_python并发编程之多线程2死锁与递归锁,信号量等...

一、死锁现象与递归锁进程也是有死锁的所谓死锁:是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作

一、死锁现象与递归锁

进程也是有死锁的

所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,

它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,

如下就是死锁

1 死锁-------------------

2 from threading importThread,Lock,RLock3 importtime4 mutexA =Lock()5 mutexB =Lock()6 classMyThread(Thread):7 defrun(self):8 self.f1()9 self.f2()10 deff1(self):11 mutexA.acquire()12 print('\033[33m%s 拿到A锁'%self.name)13 mutexB.acquire()14 print('\033[45%s 拿到B锁'%self.name)15 mutexB.release()16 mutexA.release()17 deff2(self):18 mutexB.acquire()19 print('\033[33%s 拿到B锁' %self.name)20 time.sleep(1) #睡一秒就是为了保证A锁已经被别人那到了

21 mutexA.acquire()22 print('\033[45m%s 拿到B锁' %self.name)23 mutexA.release()24 mutexB.release()25 if __name__ == '__main__':26 for i in range(10):27 t =MyThread()28 t.start() #一开启就会去调用run方法

死锁现象

那么怎么解决死锁现象呢?

解决方法,递归锁:在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。

这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。

直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁

mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,

则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止

1 #2.解决死锁的方法--------------递归锁

2 from threading importThread,Lock,RLock3 importtime4 mutexB = mutexA =RLock()5 classMyThread(Thread):6 defrun(self):7 self.f1()8 self.f2()9 deff1(self):10 mutexA.acquire()11 print('\033[33m%s 拿到A锁'%self.name)12 mutexB.acquire()13 print('\033[45%s 拿到B锁'%self.name)14 mutexB.release()15 mutexA.release()16 deff2(self):17 mutexB.acquire()18 print('\033[33%s 拿到B锁' %self.name)19 time.sleep(1) #睡一秒就是为了保证A锁已经被别人拿到了

20 mutexA.acquire()21 print('\033[45m%s 拿到B锁' %self.name)22 mutexA.release()23 mutexB.release()24 if __name__ == '__main__':25 for i in range(10):26 t =MyThread()27 t.start() #一开启就会去调用run方法

解决死锁

二、信号量Semaphore(其实也是一把锁)

Semaphore管理一个内置的计数器

Semaphore与进程池看起来类似,但是是完全不同的概念。

进程池:Pool(4),最大只能产生四个进程,而且从头到尾都只是这四个进程,不会产生新的。

信号量:信号量是产生的一堆进程/线程,即产生了多个任务都去抢那一把锁

1 from threading importThread,Semaphore,currentThread2 importtime,random3 sm = Semaphore(5) #运行的时候有5个人

4 deftask():5 sm.acquire()6 print('\033[42m %s上厕所'%currentThread().getName())7 time.sleep(random.randint(1,3))8 print('\033[31m %s上完厕所走了'%currentThread().getName())9 sm.release()10 if __name__ == '__main__':11 for i in range(20): #开了10个线程 ,这20人都要上厕所

12 t = Thread(target=task)13 t.start()

Semaphore举例

1 hread-1上厕所2 Thread-2上厕所3 Thread-3上厕所4 Thread-4上厕所5 Thread-5上厕所6 Thread-3上完厕所走了7 Thread-6上厕所8 Thread-1上完厕所走了9 Thread-7上厕所10 Thread-2上完厕所走了11 Thread-8上厕所12 Thread-6上完厕所走了13 Thread-5上完厕所走了14 Thread-4上完厕所走了15 Thread-9上厕所16 Thread-10上厕所17 Thread-11上厕所18 Thread-9上完厕所走了19 Thread-12上厕所20 Thread-7上完厕所走了21 Thread-13上厕所22 Thread-10上完厕所走了23 Thread-8上完厕所走了24 Thread-14上厕所25 Thread-15上厕所26 Thread-12上完厕所走了27 Thread-11上完厕所走了28 Thread-16上厕所29 Thread-17上厕所30 Thread-14上完厕所走了31 Thread-15上完厕所走了32 Thread-17上完厕所走了33 Thread-18上厕所34 Thread-19上厕所35 Thread-20上厕所36 Thread-13上完厕所走了37 Thread-20上完厕所走了38 Thread-16上完厕所走了39 Thread-18上完厕所走了40 Thread-19上完厕所走了

运行结果

三、Event

线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行

from threading import Event

Event.isSet() #返回event的状态值

Event.wait() #如果 event.isSet()==False将阻塞线程;

Event.set() #设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;

Event.clear() #恢复

例如1.,有多个工作线程尝试链接MySQL,我们想要在链接前确保MySQL服务正常才让那些工作线程去连接MySQL服务器,如果连接不成功,都会去尝试重新连接。那么我们就可以采用threading.Event机制来协调各个工作线程的连接操作

1 #首先定义两个函数,一个是连接数据库

2 #一个是检测数据库

3 from threading importThread,Event,currentThread4 importtime5 e =Event()6 defconn_mysql():7 '''链接数据库'''

8 count = 1

9 while not e.is_set(): #当没有检测到时候

10 if count >3: #如果尝试次数大于3,就主动抛异常

11 raise ConnectionError('尝试链接的次数过多')12 print('\033[45m%s 第%s次尝试'%(currentThread(),count))13 e.wait(timeout=1) #等待检测(里面的参数是超时1秒)

14 count+=1

15 print('\033[44m%s 开始链接...'%(currentThread().getName()))16 defcheck_mysql():17 '''检测数据库'''

18 print('\033[42m%s 检测mysql...' %(currentThread().getName()))19 time.sleep(5)20 e.set()21 if __name__ == '__main__':22 for i in range(3): #三个去链接

23 t = Thread(target=conn_mysql)24 t.start()25 t = Thread(target=check_mysql)26 t.start()

详看

2.例如2,红绿灯的例子

1 from threading importThread,Event,currentThread2 importtime3 e =Event()4 deftraffic_lights():5 '''红绿灯'''

6 time.sleep(5)7 e.set()8 defcar():9 '''车'''

10 print('\033[42m %s 等绿灯\033[0m'%currentThread().getName())11 e.wait()12 print('\033[44m %s 车开始通行' %currentThread().getName())13 if __name__ == '__main__':14 for i in range(10):15 t = Thread(target=car) #10辆车

16 t.start()17 traffic_thread = Thread(target=traffic_lights) #一个红绿灯

18 traffic_thread.start()

红绿灯

四、定时器(Timer)

指定n秒后执行某操作

from threading importTimerdeffunc(n):print('hello,world',n)

t= Timer(3,func,args=(123,)) #等待三秒后执行func函数,因为func函数有参数,那就再传一个参数进去

t.start()

五、线程queue

queue队列 :使用import queue,用法与进程Queue一样

queue.Queue(maxsize=0) #先进先出

1 #1.队列-----------

2 importqueue3 q = queue.Queue(3) #先进先出

4 q.put('first')5 q.put('second')6 q.put('third')7 print(q.get())8 print(q.get())9 print(q.get())

View Code

queue.LifoQueue(maxsize=0)#先进后出

1 #2.堆栈----------

2 q = queue.LifoQueue() #先进后出(或者后进先出)

3 q.put('first')4 q.put('second')5 q.put('third')6 q.put('for')7 print(q.get())8 print(q.get())9 print(q.get())

View Code

queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列

1 #----------------

2 '''3.put进入一个元组,元组的第一个元素是优先级3 (通常也可以是数字,或者也可以是非数字之间的比较)4 数字越小,优先级越高'''

5 q =queue.PriorityQueue()6 q.put((20,'a'))7 q.put((10,'b')) #先出来的是b,数字越小优先级越高嘛

8 q.put((30,'c'))9 print(q.get())10 print(q.get())11 print(q.get())

View Code

六、多线程性能测试

1.多核也就是多个CPU

(1)cpu越多,提高的是计算的性能

(2)如果程序是IO操作的时候(多核和单核是一样的),再多的cpu也没有意义。

2.实现并发

第一种:一个进程下,开多个线程

第二种:开多个进程

3.多进程:

优点:可以利用多核

缺点:开销大

4.多线程

优点:开销小

缺点:不可以利用多核

5多进程和多进程的应用场景

1.计算密集型:也就是计算多,IO少

如果是计算密集型,就用多进程(如金融分析等)

2.IO密集型:也就是IO多,计算少

如果是IO密集型的,就用多线程(一般遇到的都是IO密集型的)

下例子练习:

1 #计算密集型的要开启多进程

2 from multiprocessing importProcess3 from threading importThread4 importtime5 defwork():6 res =07 for i in range(10000000):8 res+=i9 if __name__ == '__main__':10 l =[]11 start =time.time()12 for i in range(4):13 p = Process(target=work) #1.9371106624603271 #可以利用多核(也就是多个cpu)

14 #p = Thread(target=work) #3.0401737689971924

15 l.append(p)16 p.start()17 for p inl:18 p.join()19 stop =time.time()20 print('%s'%(stop-start))

计算密集型

1 #I/O密集型要开启多线程

2 from multiprocessing importProcess3 from threading importThread4 importtime5 defwork():6 time.sleep(3)7 if __name__ == '__main__':8 l =[]9 start =time.time()10 for i in range(400):11 #p = Process(target=work) #34.9549994468689 #因为开了好多进程,它的开销大,花费的时间也就长了

12 p = Thread(target=work) #2.2151265144348145 #当开了多个线程的时候,它的开销小,花费的时间也小了

13 l.append(p)14 p.start()15 for i inl :16 i.join()17 stop =time.time()18 print('%s'%(stop-start))

I/O密集型

七、python标准模块----concurrent.futures



推荐阅读
  • 预备知识可参考我整理的博客Windows编程之线程:https:www.cnblogs.comZhuSenlinp16662075.htmlWindows编程之线程同步:https ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • Android工程师面试准备及设计模式使用场景
    本文介绍了Android工程师面试准备的经验,包括面试流程和重点准备内容。同时,还介绍了建造者模式的使用场景,以及在Android开发中的具体应用。 ... [详细]
  • Java太阳系小游戏分析和源码详解
    本文介绍了一个基于Java的太阳系小游戏的分析和源码详解。通过对面向对象的知识的学习和实践,作者实现了太阳系各行星绕太阳转的效果。文章详细介绍了游戏的设计思路和源码结构,包括工具类、常量、图片加载、面板等。通过这个小游戏的制作,读者可以巩固和应用所学的知识,如类的继承、方法的重载与重写、多态和封装等。 ... [详细]
  • Spring源码解密之默认标签的解析方式分析
    本文分析了Spring源码解密中默认标签的解析方式。通过对命名空间的判断,区分默认命名空间和自定义命名空间,并采用不同的解析方式。其中,bean标签的解析最为复杂和重要。 ... [详细]
  • Commit1ced2a7433ea8937a1b260ea65d708f32ca7c95eintroduceda+Clonetraitboundtom ... [详细]
  • Java容器中的compareto方法排序原理解析
    本文从源码解析Java容器中的compareto方法的排序原理,讲解了在使用数组存储数据时的限制以及存储效率的问题。同时提到了Redis的五大数据结构和list、set等知识点,回忆了作者大学时代的Java学习经历。文章以作者做的思维导图作为目录,展示了整个讲解过程。 ... [详细]
  • 本文讨论了一个关于cuowu类的问题,作者在使用cuowu类时遇到了错误提示和使用AdjustmentListener的问题。文章提供了16个解决方案,并给出了两个可能导致错误的原因。 ... [详细]
  • 关键词:Golang, Cookie, 跟踪位置, net/http/cookiejar, package main, golang.org/x/net/publicsuffix, io/ioutil, log, net/http, net/http/cookiejar ... [详细]
  • 在重复造轮子的情况下用ProxyServlet反向代理来减少工作量
    像不少公司内部不同团队都会自己研发自己工具产品,当各个产品逐渐成熟,到达了一定的发展瓶颈,同时每个产品都有着自己的入口,用户 ... [详细]
  • web.py开发web 第八章 Formalchemy 服务端验证方法
    本文介绍了在web.py开发中使用Formalchemy进行服务端表单数据验证的方法。以User表单为例,详细说明了对各字段的验证要求,包括必填、长度限制、唯一性等。同时介绍了如何自定义验证方法来实现验证唯一性和两个密码是否相等的功能。该文提供了相关代码示例。 ... [详细]
  • 深入理解Kafka服务端请求队列中请求的处理
    本文深入分析了Kafka服务端请求队列中请求的处理过程,详细介绍了请求的封装和放入请求队列的过程,以及处理请求的线程池的创建和容量设置。通过场景分析、图示说明和源码分析,帮助读者更好地理解Kafka服务端的工作原理。 ... [详细]
  • VueCLI多页分目录打包的步骤记录
    本文介绍了使用VueCLI进行多页分目录打包的步骤,包括页面目录结构、安装依赖、获取Vue CLI需要的多页对象等内容。同时还提供了自定义不同模块页面标题的方法。 ... [详细]
  • 一、什么是闭包?有什么作用什么是闭包闭包是定义在一个函数内部的函数,它可以访问父级函数的内部变量。当一个闭包被创建时,会关联一个作用域—— ... [详细]
  • wpf+mvvm代码组织结构及实现方式
    本文介绍了wpf+mvvm代码组织结构的由来和实现方式。作者回顾了自己大学时期接触wpf开发和mvvm模式的经历,认为mvvm模式使得开发更加专注于业务且高效。与此同时,作者指出mvvm模式相较于mvc模式的优势。文章还提到了当没有mvvm时处理数据和UI交互的例子,以及前后端分离和组件化的概念。作者希望能够只关注原始数据结构,将数据交给UI自行改变,从而解放劳动力,避免加班。 ... [详细]
author-avatar
井爱3053_170
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有