热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

linux历史的内存数据,Linux学习内存管理篇(一)概览

一、内存简介内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算

一、内存简介

内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来。计算机中所有程序的运行都是在内存中进行的。

二、内存管理演变史

在早期的计算机中,程序是直接运行在物理内存上的。直接操作物理内存有几个问题:

地址空间不隔离: 程序操作相同地址空间会造成互相影响甚至奔溃,而且安全性也得不到保证。

使用效率低:没有特别好的策略保证多个进程对超过物理内存大小的内存需求的满足。

程序运行地址不能确定: 程序每次需要运行时,都需要在内存中分配一块足够大的空闲区域,而问题是这个空闲的位置是不能确定的,这会带来一些重定位的问题。

内存管理无非就是想办法解决上面三个问题。

这里引用计算机界一句无从考证的名言:“计算机系统里的任何问题都可以靠引入一个中间层来解决。”

那么办法就是在程序和物理内存之间引入了虚拟内存这个概念。虚拟内存位于程序和物理内存之间,程序只能看见虚拟内存,再也不能直接访问物理内存。每个程序都有自己独立的进程地址空间,这样就做到了进程隔离。这里的进程地址空间是指虚拟地址。

三、虚拟内存

物理内存:系统中由RAM芯片控制的可用内存。

虚拟内存:虚拟内存是计算机系统内存管理的一种技术。它使得应用程序认为它拥有连续的可用的内存(一个连续完整的地址空间),而实际上,它通常是被分隔成多个物理内存碎片,还有部分暂时存储在外部磁盘存储器上,在需要时进行数据交换。

a0993c07f660?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

四、虚拟内存的划分

从Linux操作系统层次上,可将Linux虚拟内存划分为用户空间内存和内核空间内存。以32位操作系统为例,最大寻址范围是4G,也就是整个虚拟地址空间是4G,Linux简化了分段机制,使得虚拟地址与线性地址总是一致的。Linux一般把这个4G的地址空间划分为两个部分:其中 0~3G为用户程序地址空间,虚地址0x00000000到0xBFFFFFFF,供各个进程使用;3G~4G为内核的地址空间,虚拟地址 0xC0000000到0xFFFFFFFF, 供内核使用。

这里有几点:

用户进程通常情况下只能访问用户空间( 0~3G)的虚拟地址,不能访问内核空间的虚拟地址。例外情况只有用户进程进行系统调用(代表用户进程在内核态执行)等时刻可以访问到内核空间。

每个进程的用户空间(0-3G)完全独立、互不相干,内核空间(3G-4G)则由则由所有进程以及内核共享。

用户空间对应进程,所以每当进程切换,用户空间就会跟着变化;而内核空间是由内核负责映射,它并不会跟着进程变化,是固定的。内核空间地址有自己对应的页表,用户进程各自有不同的页表。

a0993c07f660?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

五、虚拟地址与物理地址的映射方案

既然我们在程序和物理地址之间增加了虚拟地址,那么就要解决怎么从虚拟地址映射到物理地址,因为程序最终肯定是运行在物理内存中的,主要有分段和分页两种技术。

分段(Segmentation):将程序所需要的内存地址空间大小的虚拟空间映射到某个物理地址空间。

a0993c07f660?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

我们将两块大小相同的虚拟地址空间和实际物理地址空间一一映射,即虚拟地址空间中的每个字节对应于实际地址空间中的每个字节,这个映射过程由软件来设置映射的机制,实际的转换由硬件来完成。

分析:这种做法解决了地址隔离和地址重定位问题,但是并没有解决效率问题。因为这种内存映射机制仍然是以程序为单位,当内存不足时仍然需要将整个程序交换到磁盘,这样内存使用的效率仍然很低。

分页(Page) :分页机制就是把内存地址空间分为若干个很小的固定大小的页。

当然这个粒度不能太大也不能太小。太大浪费,太小又影响分配效率。Linux中一般页的大小是4KB。然后我们把进程的地址空间按页分割,把常用的数据和代码页装载到内存中,不常用的代码和数据保存在磁盘中。

a0993c07f660?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

我们可以看到进程1和进程2的虚拟地址空间都被映射到了不连续的物理地址空间内(这个意义很大,如果有一天我们的连续物理地址空间不够,但是不连续的地址空间很多,如果没有这种技术,我们的程序就没有办法运行),甚至他们共用了一部分物理地址空间,这就是共享内存。进程1的虚拟页VP2和VP3被交换到了磁盘中,在程序需要这两页的时候,Linux内核会产生一个缺页异常,然后异常管理程序会将其读到内存中。

分析:分页的内存划分与分段不同,分段是程序需要多少,分配多大。分页是我固定把整个地址空间按4K大小等分,程序需要多少,就给你拼几块。所以它同样也解决了地址隔离和地址重定位问题。另外,它把常用的数据和代码页装载到内存中,不常用的代码和数据保存在磁盘中,这样提升了效率。

另外,分页机制的实现需要硬件的实现,这个硬件名字叫做MMU(Memory Management Unit),他就是专门负责从虚拟地址到物理地址转换的,也就是从虚拟页找到物理页。

六、地址类型

物理地址:CPU通过地址总线的寻址,找到的真实的物理内存对应地址。

逻辑地址:机器语言指令中,用来指定一个操作数或者是一条指令的地址。即程序代码经过编译后出现在 汇编程序中地址。

虚拟地址(线性地址):是CPU所能寻址的空间范围。每个进程所能使用的虚拟地址大小取决于CPU的寻址能力,处理器是多少位的,就有多少位地址总线,以32位系统为例,那么32位总线就一次读写能力是32bit(4Byte).最大寻址范围为2^32 - 1(4G).

转换关系:

a0993c07f660?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

七、思考

经过上面的总结,我们知道了所谓的Linux内存管理,实际上是虚拟内存的管理,而虚拟内存又分为内核空间和用户空间。 对应到Android上,也就是Kernel层内存管理 和 用户层 Native + Dalvik 内存管理。

那么我理解的内存管理最终的目的是:将系统内有限的物理内存如何及时有效的分配给多个程序。细分为两点:最小化管理内存所需的时间。最大化程序的可用内存。



推荐阅读
  • Android中高级面试必知必会,积累总结
    本文介绍了Android中高级面试的必知必会内容,并总结了相关经验。文章指出,如今的Android市场对开发人员的要求更高,需要更专业的人才。同时,文章还给出了针对Android岗位的职责和要求,并提供了简历突出的建议。 ... [详细]
  • C++字符字符串处理及字符集编码方案
    本文介绍了C++中字符字符串处理的问题,并详细解释了字符集编码方案,包括UNICODE、Windows apps采用的UTF-16编码、ASCII、SBCS和DBCS编码方案。同时说明了ANSI C标准和Windows中的字符/字符串数据类型实现。文章还提到了在编译时需要定义UNICODE宏以支持unicode编码,否则将使用windows code page编译。最后,给出了相关的头文件和数据类型定义。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • 本文介绍了作者在开发过程中遇到的问题,即播放框架内容安全策略设置不起作用的错误。作者通过使用编译时依赖注入的方式解决了这个问题,并分享了解决方案。文章详细描述了问题的出现情况、错误输出内容以及解决方案的具体步骤。如果你也遇到了类似的问题,本文可能对你有一定的参考价值。 ... [详细]
  • CentOS 7部署KVM虚拟化环境之一架构介绍
    本文介绍了CentOS 7部署KVM虚拟化环境的架构,详细解释了虚拟化技术的概念和原理,包括全虚拟化和半虚拟化。同时介绍了虚拟机的概念和虚拟化软件的作用。 ... [详细]
  • Java在运行已编译完成的类时,是通过java虚拟机来装载和执行的,java虚拟机通过操作系统命令JAVA_HOMEbinjava–option来启 ... [详细]
  • 先看官方文档TheJavaTutorialshavebeenwrittenforJDK8.Examplesandpracticesdescribedinthispagedontta ... [详细]
  • 配置IPv4静态路由实现企业网内不同网段用户互访
    本文介绍了通过配置IPv4静态路由实现企业网内不同网段用户互访的方法。首先需要配置接口的链路层协议参数和IP地址,使相邻节点网络层可达。然后按照静态路由组网图的操作步骤,配置静态路由。这样任意两台主机之间都能够互通。 ... [详细]
  • 如何用JNI技术调用Java接口以及提高Java性能的详解
    本文介绍了如何使用JNI技术调用Java接口,并详细解析了如何通过JNI技术提高Java的性能。同时还讨论了JNI调用Java的private方法、Java开发中使用JNI技术的情况以及使用Java的JNI技术调用C++时的运行效率问题。文章还介绍了JNIEnv类型的使用方法,包括创建Java对象、调用Java对象的方法、获取Java对象的属性等操作。 ... [详细]
  • 本文讨论了在VMWARE5.1的虚拟服务器Windows Server 2008R2上安装oracle 10g客户端时出现的问题,并提供了解决方法。错误日志显示了异常访问违例,通过分析日志中的问题帧,找到了解决问题的线索。文章详细介绍了解决方法,帮助读者顺利安装oracle 10g客户端。 ... [详细]
  • 本文讨论了微软的STL容器类是否线程安全。根据MSDN的回答,STL容器类包括vector、deque、list、queue、stack、priority_queue、valarray、map、hash_map、multimap、hash_multimap、set、hash_set、multiset、hash_multiset、basic_string和bitset。对于单个对象来说,多个线程同时读取是安全的。但如果一个线程正在写入一个对象,那么所有的读写操作都需要进行同步。 ... [详细]
  • EPICS Archiver Appliance存储waveform记录的尝试及资源需求分析
    本文介绍了EPICS Archiver Appliance存储waveform记录的尝试过程,并分析了其所需的资源容量。通过解决错误提示和调整内存大小,成功存储了波形数据。然后,讨论了储存环逐束团信号的意义,以及通过记录多圈的束团信号进行参数分析的可能性。波形数据的存储需求巨大,每天需要近250G,一年需要90T。然而,储存环逐束团信号具有重要意义,可以揭示出每个束团的纵向振荡频率和模式。 ... [详细]
  • 开发笔记:加密&json&StringIO模块&BytesIO模块
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了加密&json&StringIO模块&BytesIO模块相关的知识,希望对你有一定的参考价值。一、加密加密 ... [详细]
  • 本文介绍了C#中生成随机数的三种方法,并分析了其中存在的问题。首先介绍了使用Random类生成随机数的默认方法,但在高并发情况下可能会出现重复的情况。接着通过循环生成了一系列随机数,进一步突显了这个问题。文章指出,随机数生成在任何编程语言中都是必备的功能,但Random类生成的随机数并不可靠。最后,提出了需要寻找其他可靠的随机数生成方法的建议。 ... [详细]
  • 本文介绍了Hyperledger Fabric外部链码构建与运行的相关知识,包括在Hyperledger Fabric 2.0版本之前链码构建和运行的困难性,外部构建模式的实现原理以及外部构建和运行API的使用方法。通过本文的介绍,读者可以了解到如何利用外部构建和运行的方式来实现链码的构建和运行,并且不再受限于特定的语言和部署环境。 ... [详细]
author-avatar
陈俊铭冠萍育维
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有