热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

linux内存管理之kmalloc

文章标题:linux内存管理之kmalloc。Linux是中国IT实验室的一个技术频道。包含桌面应用,Linux系统管理,内核研究,嵌入式系统和开源等一些基本分类

  在设备驱动程序中动态开辟内存,不是用malloc,而是kmalloc,或者用get_free_pages直接申请页。释放内存用的是kfree,或free_pages.

  对于提供了MMU(存储管理器,辅助操作系统进行内存管理,提供虚实地址转换等硬件支持)的处理器而言,Linux提供了复杂的存储管理系统,使得进程所能访问的内存达到4GB。

  进程的4GB内存空间被人为的分为两个部分--用户空间与内核空间。用户空间地址分布从0到3GB(PAGE_OFFSET,在0x86中它等于0xC0000000),3GB到4GB为内核空间。

  内核空间中,从3G到vmalloc_start这段地址是物理内存映射区域(该区域中包含了内核镜像、物理页框表mem_map等等),比如我们使 用的 VMware虚拟系统内存是160M,那么3G~3G+160M这片内存就应该映射物理内存。在物理内存映射区之后,就是vmalloc区域。对于 160M的系统而言,vmalloc_start位置应在3G+160M附近(在物理内存映射区与vmalloc_start期间还存在一个8M的gap 来防止跃界),vmalloc_end的位置接近4G(最后位置系统会保留一片128k大小的区域用于专用页面映射)

  kmalloc和get_free_page申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因此存在较简单的转换关系,virt_to_phys()可以实现内核虚拟地址转化为物理地址:

  #define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)

  extern inline unsigned long virt_to_phys(volatile void * address)

  {

  return __pa(address);

  }

  上面转换过程是将虚拟地址减去3G(PAGE_OFFSET=0XC000000)。

  与之对应的函数为phys_to_virt(),将内核物理地址转化为虚拟地址:

  #define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

  extern inline void * phys_to_virt(unsigned long address)

  {

  return __va(address);

  }

  virt_to_phys()和phys_to_virt()都定义在include\asm-i386\io.h中。

  -------------------------------------------------------------------------------------

  1、kmalloc() 分配连续的物理地址,用于小内存分配。

  2、__get_free_page() 分配连续的物理地址,用于整页分配。

  至于为什么说以上函数分配的是连续的物理地址和返回的到底是物理地址还是虚拟地址,下面的记录会做出解释。

  kmalloc() 函数本身是基于 slab 实现的。slab 是为分配小内存提供的一种高效机制。但 slab 这种分配机制又不是独立的,它本身也是在页分配器的基础上来划分更细粒度的内存供调用者使用。也就是说系统先用页分配器分配以页为最小单位的连续物理地 址,然后 kmalloc() 再在这上面根据调用者的需要进行切分。

  关于以上论述,我们可以查看 kmalloc() 的实现,kmalloc()函数的实现是在 __do_kmalloc() 中,可以看到在 __do_kmalloc()代码里最终调用了 __cache_alloc() 来分配一个 slab,其实

  kmem_cache_alloc() 等函数的实现也是调用了这个函数来分配新的 slab。我们按照 __cache_alloc()函数的调用路径一直跟踪下去会发现在 cache_grow() 函数中使用了 kmem_getpages()函数来分配一个物理页面,kmem_getpages() 函数中调用的alloc_pages_node() 最终是使用 __alloc_pages() 来返回一个struct page 结构,而这个结构正是系统用来描述物理页面的。这样也就证实了上面所说的,slab 是在物理页面基础上实现的。kmalloc() 分配的是物理地址。

  __get_free_page() 是页面分配器提供给调用者的最底层的内存分配函数。它分配连续的物理内存。__get_free_page() 函数本身是基于 buddy 实现的。在使用 buddy 实现的物理内存管理中最小分配粒度是以页为单位的。关于以上论述,我们可以查看__get_free_page()的实现,可以看到 __get_free_page()函数只是一个非常简单的封状,它的整个函数实现就是无条件的调用 __alloc_pages() 函数来分配物理内存,上面记录 kmalloc()实现时也提到过是在调用 __alloc_pages() 函数来分配物理页面的前提下进行的 slab 管理。那么这个函数是如何分配到物理页面又是在什么区域中进行分配的?回答这个问题只能看下相关的实现。可以看到在 __alloc_pages() 函数中,多次尝试调用get_page_from_freelist() 函数从 zonelist 中取得相关 zone,并从其中返回一个可用的 struct page 页面(这里的有些调用分支是因为标志不同)。至此,可以知道一个物理页面的分配是从 zonelist(一个 zone 的结构数组)中的 zone 返回的。那么 zonelist/zone 是如何与物理页面关联,又是如何初始化的呢?继续来看 free_area_init_nodes() 函数,此函数在系统初始化时由 zone_sizes_init() 函数间接调用的,zone_sizes_init()函数填充了三个区域:ZONE_DMA,ZONE_NORMAL,ZONE_HIGHMEM。并把他 们作为参数调用 free_area_init_nodes(),在这个函数中会分配一个 pglist_data 结构,此结构中包含了 zonelist/zone结构和一个 struct page 的物理页结构,在函数最后用此结构作为参数调用了 free_area_init_node() 函数,在这个函数中首先使用 calculate_node_totalpages() 函数标记 pglist_data 相关区域,然后调用 alloc_node_mem_map() 函数初始化 pglist_data结构中的 struct page 物理页。最后使用 free_area_init_core()函数关联 pglist_data 与 zonelist。现在通以上分析已经明确了__get_free_page() 函数分配物理内存的流程。但这里又引出了几个新问题,那就是此函数分配的物理页面是如何映射的?映射到了什么位置?到这里不得不去看下与 VMM 相关的引导代码。

  在看 VMM 相关的引导代码前,先来看一下 virt_to_phys() 与phys_to_virt 这两个函数。顾名思义,即是虚拟地址到物理地址和物理地址到虚拟地址的转换。函数实现十分简单,前者调用了__pa( address ) 转换虚拟地址到物理地址,后者调用 __va(addrress ) 将物理地址转换为虚拟地址。再看下 __pa __va 这两个宏到底做了什么。

  #define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)

  #define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

  通过上面可以看到仅仅是把地址加上或减去 PAGE_OFFSET,而PAGE_OFFSET 在 x86 下定义为 0xC0000000。这里又引出了疑问,在 linux 下写过 driver 的人都知道,在使用 kmalloc() 与

  __get_free_page() 分配完物理地址后,如果想得到正确的物理地址需要使用 virt_to_phys() 进行转换。那么为什么要有这一步呢?我们不分配的不就是物理地址么?怎么分配完成还需要转换?如果返回的是虚拟地址,那么根据如上对 virt_to_phys() 的分析,为什么仅仅对 PAGE_OFFSET 操作就能实现地址转换呢?虚拟地址与物理地址之间的转换不需要查页表么?代着以上诸多疑问来看 VMM 相关的引导代码。

  直接从 start_kernel() 内核引导部分来查找 VMM 相关内容。可以看到第一个应该关注的函数是 setup_arch(),在这个函数当中使用paging_init() 函数来初始化和映射硬件页表(在初始化前已有 8M内存被映射,在这里不做记录),而 paging_init() 则是调用的pagetable_init() 来完成内核物理地址的映射以及相关内存的初始化。在 pagetable_init() 函数中,首先是一些 PAE/PSE/PGE 相关判断与设置,然后使用 kernel_physical_mapping_init() 函数来实现内核物理内存的映射。在这个函数中可以很清楚的看到,pgd_idx 是以PAGE_OFFSET 为启始地址进行映射的,也就是说循环初始化所有物理地址是以 PAGE_OFFSET 为起点的。继续观察我们可以看到在 PMD 被初始化后,所有地址计算均是以 PAGE_OFFSET 作为标记来递增的。分析到这里已经很明显的可以看出,物理地址被映射到以 PAGE_OFFSET 开始的虚拟地址空间。这样以上所有疑问就都有了答案。kmalloc() 与__get_free_page() 所分配的物理页面被映射到了 PAGE_OFFSET 开始的虚拟地址,也就是说实际物理地址与虚拟地址有一组一一对应的关系,

  正是因为有了这种映射关系,对内核以 PAGE_OFFSET 启始的虚拟地址的分配也就是对物理地址的分配(当然这有一定的范围,应该在 PAGE_OFFSET与 VMALLOC_START 之间,后者为 vmalloc() 函数分配内存的启始地址)。这也就解释了为什么 virt_to_phys() 与 phys_to_virt() 函数的实现仅仅是加/减 PAGE_OFFSET 即可在虚拟地址与物理地址之间转换,正是因为了有了这种映射,且固定不变,所以才不用去查页表进行转换。这也同样回答了开始的问题,即 kmalloc() / __get_free_page() 分配的是物理地址,而返回的则是虚拟地址(虽然这听上去有些别扭)。正是因为有了这种映射关系,所以需要将它们的返回地址减去 PAGE_OFFSET 才可以得到真正的物理地址。

[1] [2] 下一页


推荐阅读
  • 学习SLAM的女生,很酷
    本文介绍了学习SLAM的女生的故事,她们选择SLAM作为研究方向,面临各种学习挑战,但坚持不懈,最终获得成功。文章鼓励未来想走科研道路的女生勇敢追求自己的梦想,同时提到了一位正在英国攻读硕士学位的女生与SLAM结缘的经历。 ... [详细]
  • 本文介绍了在rhel5.5操作系统下搭建网关+LAMP+postfix+dhcp的步骤和配置方法。通过配置dhcp自动分配ip、实现外网访问公司网站、内网收发邮件、内网上网以及SNAT转换等功能。详细介绍了安装dhcp和配置相关文件的步骤,并提供了相关的命令和配置示例。 ... [详细]
  • Metasploit攻击渗透实践
    本文介绍了Metasploit攻击渗透实践的内容和要求,包括主动攻击、针对浏览器和客户端的攻击,以及成功应用辅助模块的实践过程。其中涉及使用Hydra在不知道密码的情况下攻击metsploit2靶机获取密码,以及攻击浏览器中的tomcat服务的具体步骤。同时还讲解了爆破密码的方法和设置攻击目标主机的相关参数。 ... [详细]
  • Python语法上的区别及注意事项
    本文介绍了Python2x和Python3x在语法上的区别,包括print语句的变化、除法运算结果的不同、raw_input函数的替代、class写法的变化等。同时还介绍了Python脚本的解释程序的指定方法,以及在不同版本的Python中如何执行脚本。对于想要学习Python的人来说,本文提供了一些注意事项和技巧。 ... [详细]
  • 本文介绍了Oracle数据库中tnsnames.ora文件的作用和配置方法。tnsnames.ora文件在数据库启动过程中会被读取,用于解析LOCAL_LISTENER,并且与侦听无关。文章还提供了配置LOCAL_LISTENER和1522端口的示例,并展示了listener.ora文件的内容。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • 本文介绍了在Linux下安装Perl的步骤,并提供了一个简单的Perl程序示例。同时,还展示了运行该程序的结果。 ... [详细]
  • 本文介绍了在Mac上搭建php环境后无法使用localhost连接mysql的问题,并通过将localhost替换为127.0.0.1或本机IP解决了该问题。文章解释了localhost和127.0.0.1的区别,指出了使用socket方式连接导致连接失败的原因。此外,还提供了相关链接供读者深入了解。 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • Webmin远程命令执行漏洞复现及防护方法
    本文介绍了Webmin远程命令执行漏洞CVE-2019-15107的漏洞详情和复现方法,同时提供了防护方法。漏洞存在于Webmin的找回密码页面中,攻击者无需权限即可注入命令并执行任意系统命令。文章还提供了相关参考链接和搭建靶场的步骤。此外,还指出了参考链接中的数据包不准确的问题,并解释了漏洞触发的条件。最后,给出了防护方法以避免受到该漏洞的攻击。 ... [详细]
  • Linux磁盘的分区、格式化的观察和操作步骤
    本文介绍了如何观察Linux磁盘的分区状态,使用lsblk命令列出系统上的所有磁盘列表,并解释了列表中各个字段的含义。同时,还介绍了使用parted命令列出磁盘的分区表类型和分区信息的方法。在进行磁盘分区操作时,根据分区表类型选择使用fdisk或gdisk命令,并提供了具体的分区步骤。通过本文,读者可以了解到Linux磁盘分区和格式化的基本知识和操作步骤。 ... [详细]
  • 本文介绍了Linux系统中正则表达式的基础知识,包括正则表达式的简介、字符分类、普通字符和元字符的区别,以及在学习过程中需要注意的事项。同时提醒读者要注意正则表达式与通配符的区别,并给出了使用正则表达式时的一些建议。本文适合初学者了解Linux系统中的正则表达式,并提供了学习的参考资料。 ... [详细]
  • Ubuntu 9.04中安装谷歌Chromium浏览器及使用体验[图文]
    nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd ... [详细]
  • 如何在服务器主机上实现文件共享的方法和工具
    本文介绍了在服务器主机上实现文件共享的方法和工具,包括Linux主机和Windows主机的文件传输方式,Web运维和FTP/SFTP客户端运维两种方式,以及使用WinSCP工具将文件上传至Linux云服务器的操作方法。此外,还介绍了在迁移过程中需要安装迁移Agent并输入目的端服务器所在华为云的AK/SK,以及主机迁移服务会收集的源端服务器信息。 ... [详细]
author-avatar
人心城府深我如z何故做清纯
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有