热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入了解JAVA软引用

这篇文章主要介绍了JAVA软引用的相关资料,帮助大家更好的理解和学习,感兴趣的朋友可以了解下

定义

软引用是使用SoftReference创建的引用,强度弱于强引用,被其引用的对象在内存不足的时候会被回收,不会产生内存溢出。

说明

软引用,顾名思义就是比较“软”一点的引用。

当一个对象与GC Roots之间存在强引用时,无论何时都不会被GC回收掉。如果一个对象与GC Roots之间没有强引用与其关联而存在软引用关联时,那么垃圾回收器对它的态度就取决于内存的紧张程度了。如果内存空间足够,垃圾回收器就不会回收这个对象,但如果内存空间不足了,它就难逃被回收的厄运。

如果一个对象与GC Roots之间不存在强引用,但是存在软引用,则称这个对象为软可达(soft reachable)对象。

在垃圾回收器没有回收它的时候,软可达对象就像强可达对象一样,可以被程序正常访问和使用,但是需要通过软引用对象间接访问,需要的话也能重新使用强引用将其关联。所以软引用适合用来做内存敏感的高速缓存。

String s = new String("Frank");  // 创建强引用与String对象关联,现在该String对象为强可达状态
SoftReference softRef = new SoftReference(s);   // 再创建一个软引用关联该对象
s = null;    // 消除强引用,现在只剩下软引用与其关联,该String对象为软可达状态
s = softRef.get(); // 重新关联上强引用

这里变量s持有对字符串对象的强引用,而softRef持有对该对象的软引用,所以当执行s = null后,字符串对象就只剩下软引用了,这时如果因为内存不足发生Full GC,就会把这个字符串对象回收掉。

注意,在垃圾回收器回收一个对象前,SoftReference类所提供的get方法会返回Java对象的强引用,一旦垃圾线程回收该对象之后,get方法将返回null。所以在获取软引用对象的代码中,一定要先判断返回是否为null,以免出现NullPointerException异常而导致应用崩溃。

下面的代码会让s再次持有对象的强引用:

s = softRef.get();

如果在softRef指向的对象被回收前,用强引用指向该对象,那这个对象又会变成强可达。

来看一个使用SoftReference的栗子:

public class TestA {
  static class OOMClass{
    private int[] oom = new int[1024 * 100];// 100KB
  }

  public static void main(String[] args) throws InterruptedException {
    ReferenceQueue queue = new ReferenceQueue<>();
    List list = new ArrayList<>();
    while(true){
      for (int i = 0; i <100; i++) {
        list.add(new SoftReference(new OOMClass(), queue));
      }
      Thread.sleep(500);
    }
  }
}

注意,ReferenceQueue中声明的类型为OOMClass,即与SoftReference引用的类型一致。

设置一下虚拟机参数:

-verbose:gc -Xms4m -Xmx4m -Xmn2m

运行结果:

[GC (Allocation Failure) 1017K->432K(3584K), 0.0017239 secs]
[GC (Allocation Failure) 1072K->472K(3584K), 0.0099237 secs]
[GC (Allocation Failure) 1323K->1296K(3584K), 0.0009528 secs]
[GC (Allocation Failure) 2114K->2136K(3584K), 0.0009951 secs]
[Full GC (Ergonomics) 2136K->1992K(3584K), 0.0040658 secs]
[Full GC (Ergonomics) 2807K->2791K(3584K), 0.0036280 secs]
[Full GC (Allocation Failure) 2791K->373K(3584K), 0.0032477 secs]
[Full GC (Ergonomics) 2786K->2773K(3584K), 0.0034554 secs]
[Full GC (Allocation Failure) 2773K->373K(3584K), 0.0032667 secs]
[Full GC (Ergonomics) 2798K->2775K(3584K), 0.0036231 secs]
[Full GC (Allocation Failure) 2775K->375K(3584K), 0.0055482 secs]
[Full GC (Ergonomics) 2799K->2776K(3584K), 0.0031358 secs]
...省略n次GC信息

在TestA中,我们使用死循环不断的往list中添加新对象,如果是强引用,会很快因为内存不足而抛出OOM,因为这里的堆内存大小设置为了4M,而一个对象就有100KB,一个循环添加100个对象,也就是差不多10M,显然一个循环都跑不完就会内存不足,而这里,因为使用的是软引用,所以JVM会在内存不足的时候将软引用回收掉。

[Full GC (Allocation Failure) 2791K->373K(3584K), 0.0032477 secs]

从这一条可以看出,在内存不足发生Full GC时,回收掉了大部分的软引用指向的对象,释放了大量的内存。

因为这里新生代只分配了2M,所以很快就会发生GC,如果你的程序运行没有看到这个结果,请先确认一下虚拟机参数是否设置正确,如果设置正确还是没有看到,那么将循环次数由1000改为10000或者100000在试试看。

应用场景

软引用关联的对象,只有在内存不足的时候JVM才会回收该对象。这一点可以很好地用来解决OOM的问题,并且这个特性很适合用来实现缓存:比如网页缓存、图片缓存等。

现在考虑这样一个场景 ,在很多应用中,都会出现大量的默认图片,比如说QQ的默认头像,应用内的默认图标等等,这些图片很多地方会用到。

如果每次都去读取图片,由于读取文件速度较慢,大量重复的读取会导致性能下降。所以可以考虑将图片缓存起来,需要的时候直接从内存中读取。但是,由于图片占用内存空间比较大,缓存的图片过多会占用比较多的内存,就可能比较容易发生OOM。这时候,软引用就派得上用场了。

注意,SoftReference对象是用来保存软引用的,但它同时也是一个Java对象。所以,当软可及对象被回收之后,虽然这个SoftReference对象的get()方法返回null,但SoftReference对象本身并不是null,而此时这个SoftReference对象已经不再具有存在的价值,需要一个适当的清除机制,避免大量SoftReference对象带来的内存泄漏。

ReferenceQueue就是用来保存这些需要被清理的引用对象的。软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收器回收,Java虚拟机就会把这个软引用加入到与之关联的引用队列中。

下面用SoftReference来实现一个简单的缓存类:

public class SoftCache {
  // 引用队列
  private ReferenceQueue referenceQueue = new ReferenceQueue<>();
  // 保存软引用集合,在引用对象被回收后销毁
  private List> list = new ArrayList<>();

  // 添加缓存对象
  public synchronized void add(T obj){
    // 构建软引用
    Reference reference = new SoftReference(obj, referenceQueue);
    // 加入列表中
    list.add(reference);
  }

  // 获取缓存对象
  public synchronized T get(int index){
    // 先对无效引用进行清理
    clear();
    if (index <0 || list.size()  reference = list.get(index);
    return reference == null &#63; null : reference.get();
  }

  public int size(){
    return list.size();
  }

  @SuppressWarnings("unchecked")
  private void clear(){
    Reference reference;
    while (null != (reference = (Reference) referenceQueue.poll())){
      list.remove(reference);
    }
  }
}

然后测试一下这个缓存类:

public class SoftCacheTest {
  private static int num = 0;

  public static void main(String[] args){
    SoftCache softCache = new SoftCache<>();
    for (int i = 0; i <40; i++) {
      softCache.add(new OOMClass("OOM Obj-" + ++num));
    }
    System.out.println(softCache.size());
    for (int i = 0; i 

仍使用之前的虚拟机参数:

-verbose:gc -Xms4m -Xmx4m -Xmn2m

运行结果:

[GC (Allocation Failure) 1017K->432K(3584K), 0.0012236 secs]
[GC (Allocation Failure) 1117K->496K(3584K), 0.0016875 secs]
[GC (Allocation Failure) 1347K->1229K(3584K), 0.0015059 secs]
[GC (Allocation Failure) 2047K->2125K(3584K), 0.0018090 secs]
[Full GC (Ergonomics) 2125K->1994K(3584K), 0.0054759 secs]
[Full GC (Ergonomics) 2822K->2794K(3584K), 0.0023167 secs]
[Full GC (Allocation Failure) 2794K->376K(3584K), 0.0036056 secs]
[Full GC (Ergonomics) 2795K->2776K(3584K), 0.0042365 secs]
[Full GC (Allocation Failure) 2776K->376K(3584K), 0.0035122 secs]
[Full GC (Ergonomics) 2795K->2776K(3584K), 0.0054760 secs]
[Full GC (Allocation Failure) 2776K->376K(3584K), 0.0036965 secs]
[Full GC (Ergonomics) 2802K->2777K(3584K), 0.0044513 secs]
[Full GC (Allocation Failure) 2777K->376K(3584K), 0.0041400 secs]
[Full GC (Ergonomics) 2796K->2777K(3584K), 0.0025255 secs]
[Full GC (Allocation Failure) 2777K->376K(3584K), 0.0037690 secs]
[Full GC (Ergonomics) 2817K->2777K(3584K), 0.0037759 secs]
[Full GC (Allocation Failure) 2777K->377K(3584K), 0.0042416 secs]
缓存列表大小:40
OOM Obj-37
OOM Obj-38
OOM Obj-39
OOM Obj-40
缓存列表大小:4

可以看到,缓存40个软引用对象之后,如果一次性全部存储,显然内存大小无法满足,所以在不断创建软引用对象的过程中,不断发生GC来进行垃圾回收,最终只有4个软引用未被清理掉。

强引用与软引用对比

没有对比就没有伤害,来将强引用和软引用对比一下:

public class Test {

  static class OOMClass{
    private int[] oom = new int[1024];
  }

  public static void main(String[] args) {
    testStrongReference();
    //testSoftReference();
  }

  public static void testStrongReference(){
    List list = new ArrayList<>();
    for (int i = 0; i <1000; i++) {
      list.add(new OOMClass());
    }
  }

  public static void testSoftReference(){
    ReferenceQueue referenceQueue = new ReferenceQueue<>();
    List list = new ArrayList<>();
    for (int i = 0; i <1000; i++) {
      OOMClass oomClass = new OOMClass();
      list.add(new SoftReference(oomClass, referenceQueue));
      oomClass = null;
    }
  }
}

运行testStrongReference方法的结果如下:

[GC (Allocation Failure) 1019K->384K(3584K), 0.0033595 secs]
[GC (Allocation Failure) 1406K->856K(3584K), 0.0013098 secs]
[GC (Allocation Failure) 1880K->1836K(3584K), 0.0014382 secs]
[Full GC (Ergonomics) 1836K->1756K(3584K), 0.0039761 secs]
[Full GC (Ergonomics) 2778K->2758K(3584K), 0.0021269 secs]
[Full GC (Ergonomics) 2779K->2770K(3584K), 0.0016329 secs]
[Full GC (Ergonomics) 2779K->2775K(3584K), 0.0023157 secs]
[Full GC (Ergonomics) 2775K->2775K(3584K), 0.0015927 secs]
[Full GC (Ergonomics) 3037K->3029K(3584K), 0.0025071 secs]
[Full GC (Ergonomics) 3067K->3065K(3584K), 0.0017529 secs]
[Full GC (Allocation Failure) 3065K->3047K(3584K), 0.0033445 secs]
[Full GC (Ergonomics) 3068K->3059K(3584K), 0.0016623 secs]
[Full GC (Ergonomics) 3070K->3068K(3584K), 0.0028357 secs]
[Full GC (Allocation Failure) 3068K->3068K(3584K), 0.0017616 secs]
java.lang.OutOfMemoryError: Java heap space
Dumping heap to java_pid3352.hprof ...
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
Heap dump file created [3855956 bytes in 0.017 secs]
[Full GC (Ergonomics) 3071K->376K(3584K), 0.0032068 secs]
at reference.Test$OOMClass.(Test.java:11)
at reference.Test.testStrongReference(Test.java:22)
at reference.Test.main(Test.java:15)

Process finished with exit code 1

可以看到,很快就抛出了OOM,原因是Java heap space,也就是堆内存不足。

如果运行testSoftReference方法,将会得到如下结果:

[GC (Allocation Failure) 1019K->464K(3584K), 0.0019850 secs]
[GC (Allocation Failure) 1484K->844K(3584K), 0.0015920 secs]
[GC (Allocation Failure) 1868K->1860K(3584K), 0.0043236 secs]
[Full GC (Ergonomics) 1860K->1781K(3584K), 0.0044581 secs]
[Full GC (Ergonomics) 2802K->2754K(3584K), 0.0041726 secs]
[Full GC (Ergonomics) 2802K->2799K(3584K), 0.0031293 secs]
[Full GC (Ergonomics) 3023K->3023K(3584K), 0.0024830 secs]
[Full GC (Ergonomics) 3071K->3068K(3584K), 0.0035025 secs]
[Full GC (Allocation Failure) 3068K->405K(3584K), 0.0040672 secs]
[GC (Allocation Failure) 1512K->1567K(3584K), 0.0011170 secs]
[Full GC (Ergonomics) 1567K->1496K(3584K), 0.0048438 secs]

可以看到,并没有抛出OOM,而是进行多次了GC,可以明显的看到这一条:

[Full GC (Allocation Failure) 3068K->405K(3584K), 0.0040672 secs]

当内存不足时进行了一次Full GC,回收了大部分内存空间,也就是将大部分软引用指向的对象回收掉了。

小结

  • 软引用弱于强引用
  • 软引用指向的对象会在内存不足时被垃圾回收清理掉
  • JVM会优先回收长时间闲置不用的软引用对象,对那些刚刚构建的或刚刚使用过的软引用对象会尽可能保留
  • 软引用可以有效的解决OOM问题
  • 软引用适合用作非必须大对象的缓存

至此,本篇就告一段落了,这里只简单的介绍了软引用的作用以及用法。其实软引用并没有这么好,它的使用有一些可能是致命的缺点,如果想要更深入的了解软引用的运行原理以及软引用到底是在何时进行回收,又是如何进行回收的话,可以查看翻阅后续的章节。

以上就是深入了解JAVA 软引用的详细内容,更多关于JAVA 软引用的资料请关注其它相关文章!


推荐阅读
  • 2018年人工智能大数据的爆发,学Java还是Python?
    本文介绍了2018年人工智能大数据的爆发以及学习Java和Python的相关知识。在人工智能和大数据时代,Java和Python这两门编程语言都很优秀且火爆。选择学习哪门语言要根据个人兴趣爱好来决定。Python是一门拥有简洁语法的高级编程语言,容易上手。其特色之一是强制使用空白符作为语句缩进,使得新手可以快速上手。目前,Python在人工智能领域有着广泛的应用。如果对Java、Python或大数据感兴趣,欢迎加入qq群458345782。 ... [详细]
  • vue使用
    关键词: ... [详细]
  • Echarts图表重复加载、axis重复多次请求问题解决记录
    文章目录1.需求描述2.问题描述正常状态:问题状态:3.解决方法1.需求描述使用Echats实现了一个中国地图:通过选择查询周期&#x ... [详细]
  • 本文介绍了设计师伊振华受邀参与沈阳市智慧城市运行管理中心项目的整体设计,并以数字赋能和创新驱动高质量发展的理念,建设了集成、智慧、高效的一体化城市综合管理平台,促进了城市的数字化转型。该中心被称为当代城市的智能心脏,为沈阳市的智慧城市建设做出了重要贡献。 ... [详细]
  • 本文介绍了数据库的存储结构及其重要性,强调了关系数据库范例中将逻辑存储与物理存储分开的必要性。通过逻辑结构和物理结构的分离,可以实现对物理存储的重新组织和数据库的迁移,而应用程序不会察觉到任何更改。文章还展示了Oracle数据库的逻辑结构和物理结构,并介绍了表空间的概念和作用。 ... [详细]
  • IhaveconfiguredanactionforaremotenotificationwhenitarrivestomyiOsapp.Iwanttwodiff ... [详细]
  • Python字典推导式及循环列表生成字典方法
    本文介绍了Python中使用字典推导式和循环列表生成字典的方法,包括通过循环列表生成相应的字典,并给出了执行结果。详细讲解了代码实现过程。 ... [详细]
  • 本文讨论了在Windows 8上安装gvim中插件时出现的错误加载问题。作者将EasyMotion插件放在了正确的位置,但加载时却出现了错误。作者提供了下载链接和之前放置插件的位置,并列出了出现的错误信息。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • “你永远都不知道明天和‘公司的意外’哪个先来。”疫情期间,这是我们最战战兢兢的心情。但是显然,有些人体会不了。这份行业数据,让笔者“柠檬” ... [详细]
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 生成对抗式网络GAN及其衍生CGAN、DCGAN、WGAN、LSGAN、BEGAN介绍
    一、GAN原理介绍学习GAN的第一篇论文当然由是IanGoodfellow于2014年发表的GenerativeAdversarialNetworks(论文下载链接arxiv:[h ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • 本文介绍了在Win10上安装WinPythonHadoop的详细步骤,包括安装Python环境、安装JDK8、安装pyspark、安装Hadoop和Spark、设置环境变量、下载winutils.exe等。同时提醒注意Hadoop版本与pyspark版本的一致性,并建议重启电脑以确保安装成功。 ... [详细]
author-avatar
莱茵河泮的独奏_586
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有