热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python基本语法(3)开数组

从C转过来的同学可能很迷惑怎么在Python中开数组,这里就介绍在Python开「数组」的语法,需要强调我们介绍的其实是几种序列类型,和C

从 C++ 转过来的同学可能很迷惑怎么在 Python 中开数组,这里就介绍在 Python 开「数组」的语法,需要强调我们介绍的其实是几种 序列类型,和 C 的数组有着本质区别,而更接近 C++ 中的 vector

使用 list

列表(list)大概是 Python 中最常用也最强大的序列类型,列表中可以存放任意类型的元素,包括嵌套的列表,这符合数据结构中「广义表」的定义。请注意不要将其与 C++ STL 中的双向链表 list 混淆,故本文将使用「列表」而非 list 以免造成误解。

>>> [] # 创建空列表,注意列表使用方括号
[]
>>> nums = [0, 1, 2, 3, 5, 8, 13]; nums # 初始化列表,注意整个列表可以直接打印
[0, 1, 2, 3, 5, 8, 13]
>>> nums[0] = 1; nums # 支持索引访问,还支持修改元素
[1, 1, 2, 3, 5, 8, 13]
>>> nums.append(nums[-2]+nums[-1]); nums # append() 同 vector 的 push_back(),也都没有返回值
[1, 1, 2, 3, 5, 8, 13, 21]
>>> nums.pop() # 弹出并返回末尾元素,可以当栈使用;其实还可指定位置,默认是末尾
21
>>> nums.insert(0, 1); nums # 同 vector 的 insert(position, val)
[1, 1, 1, 2, 3, 5, 8, 13]
>>> nums.remove(1); nums # 按值移除元素(只删第一个出现的),若不存在则抛出错误
[1, 1, 2, 3, 5, 8, 13]
>>> len(nums) # 求列表长度,类似 vector 的 size(),但 len() 是内置函数
7
>>> nums.reverse(); nums # 原地逆置
[13, 8, 5, 3, 2, 1, 1]
>>> sorted(nums) # 获得排序后的列表
[1, 1, 2, 3, 5, 8, 13]
>>> nums # 但原来的列表并未排序
[13, 8, 5, 3, 2, 1, 1]
>>> nums.sort(); nums # 原地排序,可以指定参数 key 作为排序标准
[1, 1, 2, 3, 5, 8, 13]
>>> nums.count(1) # 类似 std::count()
2
>>> nums.index(1) # 返回值首次出现项的索引号,若不存在则抛出错误
0
>>> nums.clear(); nums # 同 vector 的 clear()

以上示例展现了列表与 vector 的相似之处,vector 中常用的操作一般也都能在列表中找到对应方法,不过某些方法如 len(),sorted() 会以内置函数的面目出现,而 STL 算法中的函数如 find(),count(),max_element(),sort(),reverse() 在 Python 中又成了对象的方法,使用时需要注意区分,更多方法请参见官方文档的 列表详解。下面将展示列表作为 Python 的基本序列类型的一些强大功能:

Python 支持多种复合数据类型,可将不同值组合在一起。最常用的 list,类型是用方括号标注、逗号分隔的一组值。例如,[1, 2, 3] 和 ['a','b','c'] 都是列表。

>>> lst = [1, '1'] + ["2", 3.0] # 列表直接相加生成一个新列表
>>> lst # 这里存放不同的类型只是想说明可以这么做,但这不是好的做法
[1, '1', '2', 3.0]
>>> 3 in lst # 实用的成员检测操作,字符串也有该操作且还支持子串检测
True
>>> [1, '1'] in lst # 仅支持单个成员检测,不会发现「子序列」
False
>>> lst[1:3] = [2, 3]; lst # 切片并赋值,原列表被修改
[1, 2, 3, 3.0]
>>> lst[::-1] # 获得反转后的新列表
[3.0, 3, 2, 1]
>>> lst *= 2; lst # 数乘拼接
[1, 2, 3, 3.0, 1, 2, 3, 3.0]
>>> del lst[4:]; lst # 也可写 lst[4:] = [],del 语句不止可以用于删除序列中元素
[1, 2, 3, 3.0]

 以上示例展现了列表作为序列的一些常用操作,可以看出许多操作如切片是与字符串相通的,但字符串是「不可变序列」而列表是「可变序列」,故可以通过切片灵活地修改列表。在 C/C++ 中我们往往会通过循环处理字符数组,下面将展示如何使用 「列表推导式」 在字符串和列表之间转换:

>>> # 建立一个 [65, 70) 区间上的整数数组,range 也是一种类型,可看作左闭右开区间,第三个参数为步长可省略
>>> nums = list(range(65,70)) # 记得 range 外面还要套一层 list()
[65, 66, 67, 68, 69]
>>> lst = [chr(x) for x in nums] # 列表推导式的典型结构,[exp for var in iterable if cond]
>>> lst # 上两句可以合并成 [str(x) for x in range(65,70)]
['A', 'B', 'C', 'D', 'E']
>>> s = ''.join(lst); s # 用空字符串 '' 拼接列表中的元素生成新字符串
'ABCDE'
>> list(s) # 字符串生成字符列表
['A', 'B', 'C', 'D', 'E']
>>> # 如果你不知道有 s.lower() 方法就可能写出下面这样新瓶装旧酒的表达式
>>> &#39;&#39;.join([chr(ord(ch) - 65 + 97) for ch in s if ch >= &#39;A&#39; and ch <= &#39;Z&#39;])
&#39;abcde&#39;

下面演示一些在 OI 中更常见的场景,比如二维「数组」:

>>> vis = [[0] * 3] * 3 # 开一个3*3的全0数组
>>> vis
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>> vis[0][0] = 1; vis # 怎么会把其他行也修改了?
[[1, 0, 0], [1, 0, 0], [1, 0, 0]]
>>> # 先来看下一维列表的赋值
>>> a1 = [0, 0, 0]; a2 = a1; a3 = a1[:] # 列表也可以直接被赋给新的变量
>>> a1[0] = 1; a1 # 修改列表 a1,似乎正常
[1, 0, 0]
>>> a2 # 怎么 a2 也被改变了
[1, 0, 0]
>>> a3 # a3 没有变化
[0, 0, 0]
>>> id(a1) == id(a2) and id(a1) != id(a3) # 内置函数 id() 给出对象的「标识值」,可类比为地址,地址相同说明是一个对象
True
>>> vis2 = vis[:]; # 拷贝一份二维列表看看
>>> vis[0][1] = 2; vis # vis 肯定还是被批量修改
>>> [[1, 2, 0], [1, 2, 0], [1, 2, 0]]
>>> vis2 # 但 vis2 是切片拷贝的怎么还是被改了
>>> [[1, 2, 0], [1, 2, 0], [1, 2, 0]]
>>> id(vis) != id(vis2) # vis 和 vis2 确实不是一个对象啊
True
>>> # 谜底揭晓,vis2 虽然不是 vis 的引用,但其中对应行都指向相同的对象
>>> [[id(vis[i]) == id(vis2[i]) for i in range(3)]
[True, True, True]
>>> # 回看二维列表自身
>>> [id(x) for x in vis] # 具体数字和这里不一样但三个值一定相同,说明是三个相同对象
[139760373248192, 139760373248192, 139760373248192]

其实我们一直隐瞒了一个重要事实,Python 中赋值只传递了引用而非创建新值,你可以创建不同类型的变量并赋给新变量,验证发现二者的标识值是相同的,只不过直到现在我们才介绍了列表这一种可变类型,而给数字、字符串这样的不可变类型赋新值时实际上创建了新的对象,故而前后两个变量互不干扰。但列表是可变类型,所以我们修改一个列表的元素时,另一个列表由于指向同一个对象所以也被修改了。创建二维数组也是类似的情况,示例中用乘法创建二维列表相当于把 [0]*3 这个一维列表重复了 3 遍,所以涉及其中一个列表的操作会同时影响其他两个列表。更不幸的是,在将二维列表赋给其他变量的时候,就算用切片来拷贝,也只是「浅拷贝」,其中的元素仍然指向相同的对象,解决这个问题需要使用标准库中的 deepcopy,或者尽量避免整个赋值二维列表。不过还好,创建二维列表时避免创建重复的列表还是比较简单,只需使用「列表推导式」:

>>> vis1 = [[0] * 3 for _ in range(3)] # 把用不到的循环计数变量设为下划线 _ 是一种惯例
>>> # 但在 REPL 中 _ 默认指代上一个表达式输出的结果,故也可使用双下划线
>>> vis1
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>> [id(x) for x in vis1] # 具体数字和这里不一样但三个值一定不同,说明是三个不同对象
[139685508981248, 139685508981568, 139685508981184]
>>> vis1[0][0] = 1
[[1, 0, 0], [0, 0, 0], [0, 0, 0]]
>>> a2[0][0] = 10 # 访问和赋值二维数组

我们未讲循环的用法就先介绍了列表推导式,这是由于 Python 是高度动态的解释型语言,因此其程序运行有大量的额外开销。尤其是 for 循环在 Python 中运行的奇慢无比。因此在使用 Python 时若想获得高性能,尽量使用使用列表推导式,或者 filter,map 等内置函数直接操作整个序列来避免循环,当然这还是要根据具体问题而定。

使用 NumPy

什么是 NumPy

NumPy 是著名的 Python 科学计算库,提供高性能的数值及矩阵运算。在测试算法原型时可以利用 NumPy 避免手写排序、求最值等算法。NumPy 的核心数据结构是 ndarray,即 n 维数组,它在内存中连续存储,是定长的。此外 NumPy 核心是用 C 编写的,运算效率很高。不过需要注意,它不是标准库的一部分,可以使用 pip install numpy 安装,但不保证 OI 考场环境中可用。

下面的代码将介绍如何利用 NumPy 建立多维数组并进行访问。

>>> import numpy as np # 请自行搜索 import 的意义和用法
>>> np.empty(3) # 开容量为3的空数组,注意没有初始化为0
array([0.00000000e+000, 0.00000000e+000, 2.01191014e+180])
>>> np.zeros((3, 3)) # 开 3*3 的数组,并初始化为0
array([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]])
>>> a1 = np.zeros((3, 3), dtype=int) # 开3×3的整数数组
>>> a1[0][0] = 1 # 访问和赋值
>>> a1[0, 0] = 1 # 更友好的语法
>>> a1.shape # 数组的形状
(3, 3)>>> a1[:2, :2] # 取前两行、前两列构成的子阵,无拷贝
array([[1, 0],[0, 0]])>>> a1[0, 2] # 获取第 1、3 列,无拷贝
array([[1, 0],[0, 0],[0, 0]])
>>> np.max(a1) # 获取数组最大值
1
>>> a1.flatten() # 将数组展平
array([1, 0, 0, 0, 0, 0, 0, 0, 0])>>> np.sort(a1, axis = 1) # 沿行方向对数组进行排序,返回排序结果
array([[0, 0, 1],[0, 0, 0],[0, 0, 0]])
>>> a1.sort(axis = 1) # 沿行方向对数组进行原地排序

使用 array

array 是 Python 标准库提供的一种高效数值数组,可以紧凑地表示基本类型值的数组,但不支持数组嵌套,也很少见到有人使用它,这里只是顺便提一下。

若无特殊说明,后文出现「数组」一般指「列表」。


推荐阅读
  • 模板引擎StringTemplate的使用方法和特点
    本文介绍了模板引擎StringTemplate的使用方法和特点,包括强制Model和View的分离、Lazy-Evaluation、Recursive enable等。同时,还介绍了StringTemplate语法中的属性和普通字符的使用方法,并提供了向模板填充属性的示例代码。 ... [详细]
  • 第四章高阶函数(参数传递、高阶函数、lambda表达式)(python进阶)的讲解和应用
    本文主要讲解了第四章高阶函数(参数传递、高阶函数、lambda表达式)的相关知识,包括函数参数传递机制和赋值机制、引用传递的概念和应用、默认参数的定义和使用等内容。同时介绍了高阶函数和lambda表达式的概念,并给出了一些实例代码进行演示。对于想要进一步提升python编程能力的读者来说,本文将是一个不错的学习资料。 ... [详细]
  • 本文介绍了如何在给定的有序字符序列中插入新字符,并保持序列的有序性。通过示例代码演示了插入过程,以及插入后的字符序列。 ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • C语言常量与变量的深入理解及其影响
    本文深入讲解了C语言中常量与变量的概念及其深入实质,强调了对常量和变量的理解对于学习指针等后续内容的重要性。详细介绍了常量的分类和特点,以及变量的定义和分类。同时指出了常量和变量在程序中的作用及其对内存空间的影响,类似于const关键字的只读属性。此外,还提及了常量和变量在实际应用中可能出现的问题,如段错误和野指针。 ... [详细]
  • STL迭代器的种类及其功能介绍
    本文介绍了标准模板库(STL)定义的五种迭代器的种类和功能。通过图表展示了这几种迭代器之间的关系,并详细描述了各个迭代器的功能和使用方法。其中,输入迭代器用于从容器中读取元素,输出迭代器用于向容器中写入元素,正向迭代器是输入迭代器和输出迭代器的组合。本文的目的是帮助读者更好地理解STL迭代器的使用方法和特点。 ... [详细]
  • 本文整理了315道Python基础题目及答案,帮助读者检验学习成果。文章介绍了学习Python的途径、Python与其他编程语言的对比、解释型和编译型编程语言的简述、Python解释器的种类和特点、位和字节的关系、以及至少5个PEP8规范。对于想要检验自己学习成果的读者,这些题目将是一个不错的选择。请注意,答案在视频中,本文不提供答案。 ... [详细]
  • Ihaveaworkfolderdirectory.我有一个工作文件夹目录。holderDir.glob(*)>holder[ProjectOne, ... [详细]
  • 电话号码的字母组合解题思路和代码示例
    本文介绍了力扣题目《电话号码的字母组合》的解题思路和代码示例。通过使用哈希表和递归求解的方法,可以将给定的电话号码转换为对应的字母组合。详细的解题思路和代码示例可以帮助读者更好地理解和实现该题目。 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • 本文详细介绍了Java中vector的使用方法和相关知识,包括vector类的功能、构造方法和使用注意事项。通过使用vector类,可以方便地实现动态数组的功能,并且可以随意插入不同类型的对象,进行查找、插入和删除操作。这篇文章对于需要频繁进行查找、插入和删除操作的情况下,使用vector类是一个很好的选择。 ... [详细]
  • Redis底层数据结构之压缩列表的介绍及实现原理
    本文介绍了Redis底层数据结构之压缩列表的概念、实现原理以及使用场景。压缩列表是Redis为了节约内存而开发的一种顺序数据结构,由特殊编码的连续内存块组成。文章详细解释了压缩列表的构成和各个属性的含义,以及如何通过指针来计算表尾节点的地址。压缩列表适用于列表键和哈希键中只包含少量小整数值和短字符串的情况。通过使用压缩列表,可以有效减少内存占用,提升Redis的性能。 ... [详细]
  • 本文介绍了使用哈夫曼树实现文件压缩和解压的方法。首先对数据结构课程设计中的代码进行了分析,包括使用时间调用、常量定义和统计文件中各个字符时相关的结构体。然后讨论了哈夫曼树的实现原理和算法。最后介绍了文件压缩和解压的具体步骤,包括字符统计、构建哈夫曼树、生成编码表、编码和解码过程。通过实例演示了文件压缩和解压的效果。本文的内容对于理解哈夫曼树的实现原理和应用具有一定的参考价值。 ... [详细]
  • 本文介绍了一道经典的状态压缩题目——关灯问题2,并提供了解决该问题的算法思路。通过使用二进制表示灯的状态,并枚举所有可能的状态,可以求解出最少按按钮的次数,从而将所有灯关掉。本文还对状压和位运算进行了解释,并指出了该方法的适用性和局限性。 ... [详细]
author-avatar
joewong9272038385813
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有