热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

使用tensorflow进行手写数字分类预测的kaggle实战

2018年9月20日笔记kaggle网站手写数字分类的比赛链接:https:www.kaggle.comcdigit-recognizer注册账号后才能参加kaggl

2018年9月20日笔记

kaggle网站手写数字分类的比赛链接:https://www.kaggle.com/c/digit-recognizer
注册账号后才能参加kaggle比赛,本文作者成绩前2%,如下图所示:

10345471-a863b32dae2066a6.png
image.png

0.尝试提交

本文作者提供一份能够获得较好成绩的文件,读者可以提交该文件熟悉提交流程。
下载链接: https://pan.baidu.com/s/1QKVMmAnW7Ui1104fhfiljg 提取码: mqex
该作答文件的提交成绩有0.99814,如果读者想提高成绩到0.99985,请阅读后面的章节。

1.配置环境

使用卷积神经网络模型要求有较高的机器配置,如果使用CPU版tensorflow会花费大量时间。
读者在有nvidia显卡的情况下,安装GPU版tensorflow会提高计算速度50倍。
安装教程链接:https://blog.csdn.net/qq_36556893/article/details/79433298
如果没有nvidia显卡,但有visa信用卡,请阅读我的另一篇文章《在谷歌云服务器上搭建深度学习平台》,链接:https://www.jianshu.com/p/893d622d1b5a

2.下载并解压数据集

MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w 密码: wa9p
下载压缩文件MNIST_data.rar完成后,选择解压到当前文件夹,不要选择解压到MNIST_data。
文件夹结构如下图所示:

10345471-2465b3dc31757727.png
image.png

3.模型训练并保存

本文作者此段代码是在谷歌云服务器上运行,谷歌云服务器的GPU显存有16G。
因为个人电脑GPU的显存不足,读者可能无法运行,解决办法是减少feed_dict中的样本数量。
理解下面一段代码,请阅读本文作者的另外一篇文章《基于tensorflow+CNN的MNIST数据集手写数字分类》,链接:https://www.jianshu.com/p/a652f1cb95b4

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import random
import numpy as npmnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 300
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)
X = np.vstack([mnist.train.images, mnist.test.images, mnist.validation.images])
y = np.vstack([mnist.train.labels, mnist.test.labels, mnist.validation.labels])
print(X.shape, y.shape)X_images = tf.reshape(X_holder, [-1, 28, 28, 1])
#convolutional layer 1
conv1_Weights = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1), name='conv1_Weights')
conv1_biases = tf.Variable(tf.constant(0.1, shape=[32]), name='conv1_biases')
conv1_conv2d = tf.nn.conv2d(X_images, conv1_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv1_biases
conv1_activated = tf.nn.relu(conv1_conv2d)
conv1_pooled = tf.nn.max_pool(conv1_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#convolutional layer 2
conv2_Weights = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1), name='conv2_Weights')
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]), name='conv2_biases')
conv2_conv2d = tf.nn.conv2d(conv1_pooled, conv2_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv2_biases
conv2_activated = tf.nn.relu(conv2_conv2d)
conv2_pooled = tf.nn.max_pool(conv2_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#full connected layer 1
connect1_flat = tf.reshape(conv2_pooled, [-1, 7 * 7 * 64])
connect1_Weights = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1), name='connect1_Weights')
connect1_biases = tf.Variable(tf.constant(0.1, shape=[1024]), name='connect1_biases')
connect1_Wx_plus_b = tf.add(tf.matmul(connect1_flat, connect1_Weights), connect1_biases)
connect1_activated = tf.nn.relu(connect1_Wx_plus_b)
#full connected layer 2
connect2_Weights = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1), name='connect2_Weights')
connect2_biases = tf.Variable(tf.constant(0.1, shape=[10]), name='connect2_biases')
connect2_Wx_plus_b = tf.add(tf.matmul(connect1_activated, connect2_Weights), connect2_biases)
predict_y = tf.nn.softmax(connect2_Wx_plus_b)
#loss and train
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdamOptimizer(0.0001)
train = optimizer.minimize(loss)init = tf.global_variables_initializer()
session = tf.Session()
session.run(init)
saver = tf.train.Saver()for i in range(20000):selected_index = random.sample(range(len(y)), k=batch_size)selected_X = X[selected_index]selected_y = y[selected_index]session.run(train, feed_dict={X_holder:selected_X, y_holder:selected_y})if i % 100 == 0:correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))train_accuracy = session.run(accuracy, feed_dict={X_holder:mnist.train.images, y_holder:mnist.train.labels})test_accuracy = session.run(accuracy, feed_dict={X_holder:mnist.test.images, y_holder:mnist.test.labels})validation_accuracy = session.run(accuracy, feed_dict={X_holder:mnist.validation.images, y_holder:mnist.validation.labels})print('step:%d train accuracy:%.4f test accuracy:%.4f validation accuracy:%.4f' %(i, train_accuracy, test_accuracy, validation_accuracy))if train_accuracy == 1 and test_accuracy == 1 and validation_accuracy == 1:save_path = saver.save(session, 'mnist_cnn_model/mnist_cnn.ckpt')print('Save to path:', save_path)

4.加载模型

本文作者提供获得最佳成绩0.99985的模型,读者可以加载该模型,并用此模型预测并提交成绩。
模型下载链接: https://pan.baidu.com/s/1zVLHdGiZflspV9jPWn_ECA 提取码: nktv
如果读者有服务器,可以尝试获取保存的模型,下载按钮如下图所示:

10345471-b8b336afd8414b71.png
image.png

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)X_images = tf.reshape(X_holder, [-1, 28, 28, 1])
#convolutional layer 1
conv1_Weights = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1), name='conv1_Weights')
conv1_biases = tf.Variable(tf.constant(0.1, shape=[32]), name='conv1_biases')
conv1_conv2d = tf.nn.conv2d(X_images, conv1_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv1_biases
conv1_activated = tf.nn.relu(conv1_conv2d)
conv1_pooled = tf.nn.max_pool(conv1_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#convolutional layer 2
conv2_Weights = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1), name='conv2_Weights')
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]), name='conv2_biases')
conv2_conv2d = tf.nn.conv2d(conv1_pooled, conv2_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv2_biases
conv2_activated = tf.nn.relu(conv2_conv2d)
conv2_pooled = tf.nn.max_pool(conv2_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#full connected layer 1
connect1_flat = tf.reshape(conv2_pooled, [-1, 7 * 7 * 64])
connect1_Weights = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1), name='connect1_Weights')
connect1_biases = tf.Variable(tf.constant(0.1, shape=[1024]), name='connect1_biases')
connect1_Wx_plus_b = tf.add(tf.matmul(connect1_flat, connect1_Weights), connect1_biases)
connect1_activated = tf.nn.relu(connect1_Wx_plus_b)
#full connected layer 2
connect2_Weights = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1), name='connect2_Weights')
connect2_biases = tf.Variable(tf.constant(0.1, shape=[10]), name='connect2_biases')
connect2_Wx_plus_b = tf.add(tf.matmul(connect1_activated, connect2_Weights), connect2_biases)
predict_y = tf.nn.softmax(connect2_Wx_plus_b)
#loss and train
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdamOptimizer(0.0001)
train = optimizer.minimize(loss)session = tf.Session()
saver = tf.train.Saver()
saver.restore(session, 'mnist_cnn_model/mnist_cnn.ckpt')
correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('load model successful')
train_images, train_labels = mnist.train.next_batch(5000)
test_images, test_labels = mnist.test.next_batch(5000)
train_accuracy = session.run(accuracy, feed_dict={X_holder:train_images, y_holder:train_labels})
test_accuracy = session.run(accuracy, feed_dict={X_holder:test_images, y_holder:test_labels})
print('train accuracy:%.4f test accuracy:%.4f' %(train_accuracy, test_accuracy))

上面一段代码的运行结果如下:

Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
INFO:tensorflow:Restoring parameters from mnist_cnn_model/mnist_cnn.ckpt
load model successful
train accuracy:1.0000 test accuracy:1.0000

5.模型预测

此第5张能够成功运行的前提是已经成功运行第4章的代码,即加载模型成功。
将测试样本分成6份,可以解决因为显存不足无法运行的问题。

import pandas as pdtest_df = pd.read_csv('test.csv')
X = test_df.values
print('特征矩阵的形状:', X.shape)
X1 = X[:5000]
X2 = X[5000:10000]
X3 = X[10000:15000]
X4 = X[15000:20000]
X5 = X[20000:25000]
X6 = X[25000:]
y1 = session.run(predict_y, feed_dict={X_holder:X1})
y2 = session.run(predict_y, feed_dict={X_holder:X2})
y3 = session.run(predict_y, feed_dict={X_holder:X3})
y4 = session.run(predict_y, feed_dict={X_holder:X4})
y5 = session.run(predict_y, feed_dict={X_holder:X5})
y6 = session.run(predict_y, feed_dict={X_holder:X6})import numpy as np
y = np.vstack([y1, y2, y3, y4, y5, y6])
y_argmax = np.argmax(y, 1)
y_argmax.shape
print('预测值的形状:', y_argmax.shape)
commit_df = pd.DataFrame({'ImageId': range(1, 1+len(y_argmax)),'Label': y_argmax})
fileName = 'kaggle_commit3.csv'
commit_df.to_csv(fileName, index=False)
print('预测结果已经保存到文件', fileName)

上面一段代码的运行结果如下:

特征矩阵的形状: (28000, 784)
预测值的形状: (28000,)
预测结果已经保存到文件 kaggle_commit3.csv

6.提交作答文件

比赛链接:https://www.kaggle.com/c/digit-recognizer
点击下面的按钮提交作答文件。

10345471-e9ce63af920c3071.png
image.png

如下图所示,点击上方红色方框标注处可以选择作答文件提交上传。
上传成功后还需要点击下方红色方框提交。
10345471-ba78ca7b769f98e3.png
image.png

提交成功后,可以实时查看作答成绩。

7.总结

1.自己电脑配置不足,使用云服务器极大的加快了工程部署和模型训练速度;
2.在kaggle经典入门赛取得前2%的成绩,把简单的事做到极致;
3.本文作者提供可以加载的模型只能取得0.99571的成绩。


推荐阅读
  • YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程
    本文介绍了关于人工智能、神经网络和深度学习的知识点,并提供了YOLOv7基于自己的数据集从零构建模型完整训练、推理计算的详细教程。文章还提到了郑州最低生活保障的话题。对于从事目标检测任务的人来说,YOLO是一个熟悉的模型。文章还提到了yolov4和yolov6的相关内容,以及选择模型的优化思路。 ... [详细]
  • 本文讨论了在openwrt-17.01版本中,mt7628设备上初始化启动时eth0的mac地址总是随机生成的问题。每次随机生成的eth0的mac地址都会写到/sys/class/net/eth0/address目录下,而openwrt-17.01原版的SDK会根据随机生成的eth0的mac地址再生成eth0.1、eth0.2等,生成后的mac地址会保存在/etc/config/network下。 ... [详细]
  • web.py开发web 第八章 Formalchemy 服务端验证方法
    本文介绍了在web.py开发中使用Formalchemy进行服务端表单数据验证的方法。以User表单为例,详细说明了对各字段的验证要求,包括必填、长度限制、唯一性等。同时介绍了如何自定义验证方法来实现验证唯一性和两个密码是否相等的功能。该文提供了相关代码示例。 ... [详细]
  • OpenMap教程4 – 图层概述
    本文介绍了OpenMap教程4中关于地图图层的内容,包括将ShapeLayer添加到MapBean中的方法,OpenMap支持的图层类型以及使用BufferedLayer创建图像的MapBean。此外,还介绍了Layer背景标志的作用和OMGraphicHandlerLayer的基础层类。 ... [详细]
  • 关于如何快速定义自己的数据集,可以参考我的前一篇文章PyTorch中快速加载自定义数据(入门)_晨曦473的博客-CSDN博客刚开始学习P ... [详细]
  • Linuxchmod目录权限命令图文详解在Linux文件系统模型中,每个文件都有一组9个权限位用来控制谁能够读写和执行该文件的内容。对于目录来说,执行位的作用是控制能否进入或者通过 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • 基于事件驱动的并发编程及其消息通信机制的同步与异步、阻塞与非阻塞、IO模型的分类
    本文介绍了基于事件驱动的并发编程中的消息通信机制,包括同步和异步的概念及其区别,阻塞和非阻塞的状态,以及IO模型的分类。同步阻塞IO、同步非阻塞IO、异步阻塞IO和异步非阻塞IO等不同的IO模型被详细解释。这些概念和模型对于理解并发编程中的消息通信和IO操作具有重要意义。 ... [详细]
  • C++字符字符串处理及字符集编码方案
    本文介绍了C++中字符字符串处理的问题,并详细解释了字符集编码方案,包括UNICODE、Windows apps采用的UTF-16编码、ASCII、SBCS和DBCS编码方案。同时说明了ANSI C标准和Windows中的字符/字符串数据类型实现。文章还提到了在编译时需要定义UNICODE宏以支持unicode编码,否则将使用windows code page编译。最后,给出了相关的头文件和数据类型定义。 ... [详细]
  • Java在运行已编译完成的类时,是通过java虚拟机来装载和执行的,java虚拟机通过操作系统命令JAVA_HOMEbinjava–option来启 ... [详细]
  • loader资源模块加载器webpack资源模块加载webpack内部(内部loader)默认只会处理javascript文件,也就是说它会把打包过程中所有遇到的 ... [详细]
  • 一、死锁现象与递归锁进程也是有死锁的所谓死锁:是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作 ... [详细]
  • 在真实开发中,因为需求是不断变化的,说不定什么时候就需要往模型里添加新的字段,添加新的模型,甚至是大规模的重构; ... [详细]
  • 1、概述首先和大家一起回顾一下Java消息服务,在我之前的博客《Java消息队列-JMS概述》中,我为大家分析了:然后在另一篇博客《Java消息队列-ActiveMq实战》中 ... [详细]
author-avatar
树缝中间_324
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有