热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

Java自旋锁(spinlock)相关知识总结

这篇文章主要介绍了Java自旋锁(spinlock)相关知识总结,帮助大家更好的理解和使用Java,感兴趣的朋友可以了解下

一、前言

谈到『自旋锁』,可能大家会说,这有啥好讲的,不就是等待资源的线程"原地打转"嘛。嗯,字面理解的意思很到位,但能深入具体点吗?自旋锁的设计真就这么简单?

本文或者说本系列的目的,都是让大家不要停留在表面,而是深入分析,做到:

  • 灵活使用
  • 掌握原理
  • 优缺点

二、锁的优化:自旋锁

当多个线程想同时访问同一个资源时,就存在资源冲突,这时,大家最直接想到的就是加锁来互斥访问,加锁会有这么几个问题:

  1. 等待资源的线程进入睡眠,发生用户态向内核态的切换,有一定的性能开销;
  2. 占用资源的线程很快就用完并释放,这时等待的线程被唤醒,又要立即切换回用户态;

那么,如果有一种方式,使得等待的线程先短暂的等待一会儿,有可能有两种结果:

  1. 等待的时间超过了这一会儿,那没办法,只好进入睡眠;
  2. 等待的时间还未超过,占用资源的线程释放了,这时等待的线程就可以直接占用资源。

这就是锁的小优化:自旋锁! 自旋锁并不是真正的锁,而是让等待的线程先原地"小转"一下,小转一下,通常小转一下的实现方式很简单:

int SPIN_LOCK_NUM = 64;
int i = 0;
boolean wait = true;

do {
 wait = // 尝试获取资源锁
} while (wait && (++i) 

我们通过循环一定的次数来自旋。 \color{red}{但是我们也应该知道,不进入休眠而原地打转,是会一直消耗 CPU 资源的,因此,才有了自旋限制!}但是我们也应该知道,不进入休眠而原地打转,是会一直消耗CPU资源的,因此,才有了自旋限制!

看下面的JDK源码:

public final class Unsafe {
 public final int getAndSetInt(Object var1, long var2, int var4) {
  int var5;
  do {
   var5 = this.getIntVolatile(var1, var2);
  } while(!this.compareAndSwapInt(var1, var2, var5, var4));
 
  return var5;
 }
}

我们可以看到,CAS就是采用的自旋锁方式,持续的尝试读取最新的 volatile 修饰的变量的值,并尝试去用期望的值去比较,然后更新。

不过这里我们要注意,因为是无限循环,因此我们要保证占用资源的线程很快就能释放,而不是长时间占用(当然,因为这里的源码系统也设定了 int 型变量,因此,占用该变量的线程很快就会使用完而释放)。

三、自旋锁的死锁

啥?怎么会有死锁? 自旋锁虽然好用,若我们只是停留在上面的分析,那么还是很肤浅的;虽然自旋锁有很大的优势,但同样缺点也不少,除了上面说的,原地打转(忙等待)会一直消耗CPU资源,同时,还会有一个潜在的可能缺陷:死锁。

3.1、系统中断

在聊死锁之前,我们需要先了解一下系统中断事件(大学课本里有这一章节,ASM汇编中也涉及到系统中断向量表):

中断是指,CPU正常运行期间,由于有内/外部事件,或者由程序预先安排的事件,引起CPU暂停当前工作,转而去处理该事件,当处理完该事件后再返回继续运行被中断(暂停)的程序。通常,操作系统将中断分为两类:外部中断(硬件中断)和内部中断(异常中断,即软件引起的);

例如:由IO设备引起的中断为硬件中断,比如,键盘输入,硬盘/光驱读写等;异常中断很好理解,比如 NullPointerException 等。

3.2、中断处理程序

系统提供了一个API使得我们的程序能够向系统申请注册一个中断处理程序(例如:程序接收用户的输入事件)。

request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *name, void *dev)

参数含义如下:

  • irq: 中断号,系统定义好,具体可查看中断向量表;
  • handler: 中断后发生的ISR(Interrupt Service Routines),直接翻译为:中断服务路由;实际类似,是响应中断服务的程序;
  • flags: 中断标志;
  • name: 中断相关的设备的ASCII,如:"keyboard",这些名字会在 /proc/irq 和 /proc/interrupts 中使用;
  • dev: 用于共享中断线,传递驱动程序的设备结构。非共享类型的中断,直接设置成为 NULL

中断标志(flags):

  • IRQF_DISABLED: 内核处理该ISR期间,禁止其它中断(一般很少使用);
  • IRQF_SAMPLE_RANDOM: 表明该设备产生的中断对内核熵池有贡献;
  • IRQF_TIMER: 系统定时器;
  • IRQF_SHARED: 多个ISR共享中断线,即一个中断,可存在多个ISR;

调用 request_irq 成功时返回0,常见错误是 -EBUSY,表示给定的中断线已经在使用(没有指定IRQF_SHARED)。

注:

  1. 该函数可能引起睡眠,所以不允许在中断上下文或者不允许睡眠的程序中使用!
  2. Linux 中的中断处理程序是无须重入的。当给定的中断处理程序正在执行的时候,其中断线在所有的处理器上都会被屏蔽掉,以防在同一个中断线上又接收到另一个新的中断。通常情况下,除了该中断的其他中断都是打开的,也就是说其他的中断线上的重点都能够被处理,但是当前的中断线总是被禁止的,故,同一个中断处理程序是绝对不会被自己嵌套的。

那这和死锁有何关系呢?额,下一小节会谈到。但这里之所有提到中断,是因为我们还要知道一件事,当系统产生中断,程序被暂停时,程序是不能进入休眠的,此时程序只能采用一种方式:自旋,来保证不会睡眠。

为何不能睡眠?这里就涉及到『中断上下文 context』!

3.3、中断上下文 Context

上面说了,request_irq 可能引起睡眠,所以不允许在中断上下文中使用,也就是说,中断上下文不允许睡眠!

中断上下文:它与进程上下文不一样,中断上下文是内核正在执行ISR。ISR没有自己独立的栈,而是使用内核栈,大小一般是有限制的(32位是8KB大小)。同时,ISR是打断了正常的程序流程,因此必须保证ISR执行速度快。正因为要执行速度快,所以,中断上下文不允许睡眠,且不允许被阻塞!

大家可能会说了,执行速度快不允许睡眠,这解释不合理,我睡眠个1ms不行么?嗯,下面我们就来分析下不能睡眠的真正原因:

1.中断处理时,不会发生进程切换。

  • 因为能打断当前中断的只可能是更高优先级的中断,其它进程的优先级是不会比中断优先级更高的;
  • 如果中断上下文休眠,则没有办法唤醒它,因为所有的 wake_up_xxx 是针对进程而言,而中断没有进程的概念;
  • 只要是中断(硬中or软中,不是香烟),都发生在内核,如果中断上下文睡眠了,内核就阻塞了,系统能阻塞么?不能!阻塞了你就只能重启机器了;

2.schedule 在切换进程时,会保存当前的进程上下文(CPU寄存器的值、状态、堆栈SP内容)以便以后恢复再运行。中断发生后,内核会保存当前被中断进程的上下文。在ISR中,是中断上下文,如果休眠或阻塞,则会调用 schedule,保存的进程上下文不是当前进程的上下文,所以不能在ISR中调用 schedule;
3.内核中 schedule 在进入时会判断是否处于中断上下文:

if(unlikely(in_interrupt()))) ..... crash!!!

4.中断 handler 会使用被中断的进程内核堆栈,但不会对其有任何影响,因为 handler用之前会保存,用完后会清除并恢复原貌;
5.处理中断上下文中,内核是不可抢占的,如果休眠,则内核....一定会被挂起,同样,你只能重启机器了;
所以,被中断的程序也不能睡眠!那么只能使用『自旋锁』来原地打转。

那还是没有说自旋为何会死锁?

自旋锁是不能递归,否则自己等待自己已经获取的锁,将会导致死锁!

一个线程获取了一个自旋锁,在执行这程中被中断处理程序打断,因此该线程只是暂停执行,并未退出,仍持有自旋锁;而中断处理程序尝试获取自旋锁而获取不到,只能自旋;这就造成一个事实:ISR拿不到自旋锁,导致自旋而无法退出,该线程被中断无法恢复执行至退出释放自旋锁,此时就造成了死锁,导致系统崩溃。

四、死锁解决

发生自旋锁死锁,往往因为单CPU这个临界资源发生了抢占,使得一方持有自旋锁被中断暂停,一方不断自旋来尝试获取自旋锁。因此,在多CPU架构下,两方如果分别运行在不同CPU上,是不会发生死锁的。

因此,自旋锁有几个重要特性需要掌握(精髓):

  • 持有自旋锁的线程(此时肯定在临界区)不能休眠,休眠会引起进程切换,CPU就会被另一个进程占用等无法使用;
  • 持有自旋锁的线程不允许被中断,哪怕是ISR也不行,否则就存在ISR自旋;
  • 持有自旋锁的线程,其内核不能被抢占,否则等同于CPU被抢占;

所以,根据以上总结一点:持有自旋锁的线程,不能因为任何原因而放弃CPU! 也因此基于上述问题,自旋也需要添加一个上限时间以防死锁。

linux上的自旋锁有三种实现:

  1. 在单cpu,不可抢占内核中,自旋锁为空操作。
  2. 在单cpu,可抢占内核中,自旋锁实现为“禁止内核抢占”,并不实现“自旋”。(注意)
  3. 在多cpu,可抢占内核中,自旋锁实现为“禁止内核抢占” + “自旋”。

以上就是Java 自旋锁(spinlock)相关知识总结的详细内容,更多关于Java 自旋锁(spinlock)的资料请关注其它相关文章!


推荐阅读
  • 近年来,大数据成为互联网世界的新宠儿,被列入阿里巴巴、谷歌等公司的战略规划中,也在政府报告中频繁提及。据《大数据人才报告》显示,目前全国大数据人才仅46万,未来3-5年将出现高达150万的人才缺口。根据领英报告,数据剖析人才供应指数最低,且跳槽速度最快。中国商业结合会数据剖析专业委员会统计显示,未来中国基础性数据剖析人才缺口将高达1400万。目前BAT企业中,60%以上的招聘职位都是针对大数据人才的。 ... [详细]
  • 本文介绍了数据库的存储结构及其重要性,强调了关系数据库范例中将逻辑存储与物理存储分开的必要性。通过逻辑结构和物理结构的分离,可以实现对物理存储的重新组织和数据库的迁移,而应用程序不会察觉到任何更改。文章还展示了Oracle数据库的逻辑结构和物理结构,并介绍了表空间的概念和作用。 ... [详细]
  • 本文介绍了Oracle数据库中tnsnames.ora文件的作用和配置方法。tnsnames.ora文件在数据库启动过程中会被读取,用于解析LOCAL_LISTENER,并且与侦听无关。文章还提供了配置LOCAL_LISTENER和1522端口的示例,并展示了listener.ora文件的内容。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • 本文介绍了在Linux下安装Perl的步骤,并提供了一个简单的Perl程序示例。同时,还展示了运行该程序的结果。 ... [详细]
  • 本文介绍了在Mac上搭建php环境后无法使用localhost连接mysql的问题,并通过将localhost替换为127.0.0.1或本机IP解决了该问题。文章解释了localhost和127.0.0.1的区别,指出了使用socket方式连接导致连接失败的原因。此外,还提供了相关链接供读者深入了解。 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • Webmin远程命令执行漏洞复现及防护方法
    本文介绍了Webmin远程命令执行漏洞CVE-2019-15107的漏洞详情和复现方法,同时提供了防护方法。漏洞存在于Webmin的找回密码页面中,攻击者无需权限即可注入命令并执行任意系统命令。文章还提供了相关参考链接和搭建靶场的步骤。此外,还指出了参考链接中的数据包不准确的问题,并解释了漏洞触发的条件。最后,给出了防护方法以避免受到该漏洞的攻击。 ... [详细]
  • Linux磁盘的分区、格式化的观察和操作步骤
    本文介绍了如何观察Linux磁盘的分区状态,使用lsblk命令列出系统上的所有磁盘列表,并解释了列表中各个字段的含义。同时,还介绍了使用parted命令列出磁盘的分区表类型和分区信息的方法。在进行磁盘分区操作时,根据分区表类型选择使用fdisk或gdisk命令,并提供了具体的分区步骤。通过本文,读者可以了解到Linux磁盘分区和格式化的基本知识和操作步骤。 ... [详细]
  • 本文介绍了Linux系统中正则表达式的基础知识,包括正则表达式的简介、字符分类、普通字符和元字符的区别,以及在学习过程中需要注意的事项。同时提醒读者要注意正则表达式与通配符的区别,并给出了使用正则表达式时的一些建议。本文适合初学者了解Linux系统中的正则表达式,并提供了学习的参考资料。 ... [详细]
  • Ubuntu 9.04中安装谷歌Chromium浏览器及使用体验[图文]
    nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd ... [详细]
  • 如何在服务器主机上实现文件共享的方法和工具
    本文介绍了在服务器主机上实现文件共享的方法和工具,包括Linux主机和Windows主机的文件传输方式,Web运维和FTP/SFTP客户端运维两种方式,以及使用WinSCP工具将文件上传至Linux云服务器的操作方法。此外,还介绍了在迁移过程中需要安装迁移Agent并输入目的端服务器所在华为云的AK/SK,以及主机迁移服务会收集的源端服务器信息。 ... [详细]
  • 本文讨论了在数据库打开和关闭状态下,重新命名或移动数据文件和日志文件的情况。针对性能和维护原因,需要将数据库文件移动到不同的磁盘上或重新分配到新的磁盘上的情况,以及在操作系统级别移动或重命名数据文件但未在数据库层进行重命名导致报错的情况。通过三个方面进行讨论。 ... [详细]
  • imx6ull开发板驱动MT7601U无线网卡的方法和步骤详解
    本文详细介绍了在imx6ull开发板上驱动MT7601U无线网卡的方法和步骤。首先介绍了开发环境和硬件平台,然后说明了MT7601U驱动已经集成在linux内核的linux-4.x.x/drivers/net/wireless/mediatek/mt7601u文件中。接着介绍了移植mt7601u驱动的过程,包括编译内核和配置设备驱动。最后,列举了关键词和相关信息供读者参考。 ... [详细]
author-avatar
天天火火红红
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有