热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

20200826:裸写算法:树的非递归先序遍历。

福哥答案2020-08-26:方法1:迭代算法从根节点开始,每次迭代弹出当前栈顶元素,并将其孩子节点压入栈中,先压右孩子再压左孩子。在这个算法中,输出到最终结果的顺序按照Top-

福哥答案2020-08-26:

方法 1:迭代
算法
从根节点开始,每次迭代弹出当前栈顶元素,并将其孩子节点压入栈中,先压右孩子再压左孩子。
在这个算法中,输出到最终结果的顺序按照 Top->Bottom 和 Left->Right,符合前序遍历的顺序。

算法复杂度
时间复杂度:访问每个节点恰好一次,时间复杂度为 O(N) ,其中 N 是节点的个数,也就是树的大小。
空间复杂度:取决于树的结构,最坏情况存储整棵树,因此空间复杂度是 O(N)。

方法 2:莫里斯遍历
方法基于 莫里斯的文章,可以优化空间复杂度。算法不会使用额外空间,只需要保存最终的输出结果。如果实时输出结果,那么空间复杂度是 O(1)。
算法
算法的思路是从当前节点向下访问先序遍历的前驱节点,每个前驱节点都恰好被访问两次。
首先从当前节点开始,向左孩子走一步然后沿着右孩子一直向下访问,直到到达一个叶子节点(当前节点的中序遍历前驱节点),所以我们更新输出并建立一条伪边 predecessor.Right = root 更新这个前驱的下一个点。如果我们第二次访问到前驱节点,由于已经指向了当前节点,我们移除伪边并移动到下一个顶点。
如果第一步向左的移动不存在,就直接更新输出并向右移动。

算法复杂度
时间复杂度:每个前驱恰好访问两次,因此复杂度是 O(N),其中 N 是顶点的个数,也就是树的大小。
空间复杂度:我们在计算中不需要额外空间,但是输出需要包含 N 个元素,因此空间复杂度为 O(N)。

代码用golang编写,如下:

package test34_preordertraversal
import (
"fmt"
"testing"
)
//https://leetcode-cn.com/problems/binary-tree-preorder-traversal/solution/er-cha-shu-de-qian-xu-bian-li-by-leetcode/
//go test -v -test.run TestPreorderTraversal
func TestPreorderTraversal(t *testing.T) {
root := &TreeNode{}
root.Val = 1
root.Left = &TreeNode{}
root.Left.Val = 2
root.Right = &TreeNode{}
root.Right.Val = 3
root.Left.Left = &TreeNode{}
root.Left.Left.Val = 4
root.Left.Right = &TreeNode{}
root.Left.Right.Val = 5
root.Right.Left = &TreeNode{}
root.Right.Left.Val = 6
root.Right.Right = &TreeNode{}
root.Right.Right.Val = 7
fmt.Println(preorderTraversal1(root))
fmt.Println(preorderTraversal2(root))
}
//Definition for a binary tree node.
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
//方法 1:迭代
//从根节点开始,每次迭代弹出当前栈顶元素,并将其孩子节点压入栈中,先压右孩子再压左孩子。
//在这个算法中,输出到最终结果的顺序按照 Top->Bottom 和 Left->Right,符合前序遍历的顺序。
//算法复杂度
//时间复杂度:访问每个节点恰好一次,时间复杂度为 O(N) ,其中 N 是节点的个数,也就是树的大小。
//空间复杂度:取决于树的结构,最坏情况存储整棵树,因此空间复杂度是 O(N)。
func preorderTraversal1(root *TreeNode) []int {
stack := make([]*TreeNode, 0)
output := make([]int, 0)
if root == nil {
return output
}
//push 根
stack = append(stack, root)
for len(stack) > 0 {
//pop
node := stack[len(stack)-1]
stack = stack[0 : len(stack)-1]
output = append(output, node.Val)
if node.Right != nil {
//push右
stack = append(stack, node.Right)
}
if node.Left != nil {
//push左
stack = append(stack, node.Left)
}
}
return output
}
//方法 2:莫里斯遍历
//方法基于 莫里斯的文章,可以优化空间复杂度。算法不会使用额外空间,只需要保存最终的输出结果。如果实时输出结果,那么空间复杂度是 O(1)。
//算法
//算法的思路是从当前节点向下访问先序遍历的前驱节点,每个前驱节点都恰好被访问两次。
//首先从当前节点开始,向左孩子走一步然后沿着右孩子一直向下访问,直到到达一个叶子节点(当前节点的中序遍历前驱节点),所以我们更新输出并建立一条伪边 predecessor.Right = root 更新这个前驱的下一个点。如果我们第二次访问到前驱节点,由于已经指向了当前节点,我们移除伪边并移动到下一个顶点。
//如果第一步向左的移动不存在,就直接更新输出并向右移动。
//算法复杂度
//时间复杂度:每个前驱恰好访问两次,因此复杂度是 O(N),其中 N 是顶点的个数,也就是树的大小。
//空间复杂度:我们在计算中不需要额外空间,但是输出需要包含 N 个元素,因此空间复杂度为 O(N)。
func preorderTraversal2(root *TreeNode) []int {
output := make([]int, 0)
node := root
for node != nil {
if node.Left == nil {
//push根
output = append(output, node.Val)
//右
node = node.Right
} else {
predecessor := node.Left
for predecessor.Right != nil && predecessor.Right != node {
predecessor = predecessor.Right
}
if predecessor.Right == nil {
output = append(output, node.Val)
predecessor.Right = node
node = node.Left
} else {
predecessor.Right = nil
node = node.Right
}
}
}
return output
}

敲命令 go test -v -test.run TestPreorderTraversal ,执行结果如下:

 



推荐阅读
  • 欢乐的票圈重构之旅——RecyclerView的头尾布局增加
    项目重构的Git地址:https:github.comrazerdpFriendCircletreemain-dev项目同步更新的文集:http:www.jianshu.comno ... [详细]
  • 阿里Treebased Deep Match(TDM) 学习笔记及技术发展回顾
    本文介绍了阿里Treebased Deep Match(TDM)的学习笔记,同时回顾了工业界技术发展的几代演进。从基于统计的启发式规则方法到基于内积模型的向量检索方法,再到引入复杂深度学习模型的下一代匹配技术。文章详细解释了基于统计的启发式规则方法和基于内积模型的向量检索方法的原理和应用,并介绍了TDM的背景和优势。最后,文章提到了向量距离和基于向量聚类的索引结构对于加速匹配效率的作用。本文对于理解TDM的学习过程和了解匹配技术的发展具有重要意义。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • 生成对抗式网络GAN及其衍生CGAN、DCGAN、WGAN、LSGAN、BEGAN介绍
    一、GAN原理介绍学习GAN的第一篇论文当然由是IanGoodfellow于2014年发表的GenerativeAdversarialNetworks(论文下载链接arxiv:[h ... [详细]
  • 推荐系统遇上深度学习(十七)详解推荐系统中的常用评测指标
    原创:石晓文小小挖掘机2018-06-18笔者是一个痴迷于挖掘数据中的价值的学习人,希望在平日的工作学习中,挖掘数据的价值, ... [详细]
  • 本文介绍了Codeforces Round #321 (Div. 2)比赛中的问题Kefa and Dishes,通过状压和spfa算法解决了这个问题。给定一个有向图,求在不超过m步的情况下,能获得的最大权值和。点不能重复走。文章详细介绍了问题的题意、解题思路和代码实现。 ... [详细]
  • SpringBoot整合SpringSecurity+JWT实现单点登录
    SpringBoot整合SpringSecurity+JWT实现单点登录,Go语言社区,Golang程序员人脉社 ... [详细]
  • STL迭代器的种类及其功能介绍
    本文介绍了标准模板库(STL)定义的五种迭代器的种类和功能。通过图表展示了这几种迭代器之间的关系,并详细描述了各个迭代器的功能和使用方法。其中,输入迭代器用于从容器中读取元素,输出迭代器用于向容器中写入元素,正向迭代器是输入迭代器和输出迭代器的组合。本文的目的是帮助读者更好地理解STL迭代器的使用方法和特点。 ... [详细]
  • 文章目录题目:二叉搜索树中的两个节点被错误地交换。基本思想1:中序遍历题目:二叉搜索树中的两个节点被错误地交换。请在不改变其结构的情况下 ... [详细]
  • 现在比较流行使用静态网站生成器来搭建网站,博客产品着陆页微信转发页面等。但每次都需要对服务器进行配置,也是一个重复但繁琐的工作。使用DockerWeb,只需5分钟就能搭建一个基于D ... [详细]
  • Opencv提供了几种分类器,例程里通过字符识别来进行说明的1、支持向量机(SVM):给定训练样本,支持向量机建立一个超平面作为决策平面,使得正例和反例之间的隔离边缘被最大化。函数原型:训练原型cv ... [详细]
  • Google Play推出全新的应用内评价API,帮助开发者获取更多优质用户反馈。用户每天在Google Play上发表数百万条评论,这有助于开发者了解用户喜好和改进需求。开发者可以选择在适当的时间请求用户撰写评论,以获得全面而有用的反馈。全新应用内评价功能让用户无需返回应用详情页面即可发表评论,提升用户体验。 ... [详细]
  • 本文研究了使用条件对抗网络进行图片到图片翻译的方法,并提出了一种通用的解决方案。通过学习输入图像到输出图像的映射和训练相应的损失函数,我们可以解决需要不同损失函数公式的问题。实验证明该方法在合成图片、重构目标和给图片着色等多个问题上都很有效。这项工作的重要发现是不再需要人为构建映射函数和损失函数,同时能够得出合理的结果。本文的研究对于图片处理、计算机图片合成和计算机视觉等领域具有重要意义。 ... [详细]
  • 本文由编程笔记#小编为大家整理,主要介绍了源码分析--ConcurrentHashMap与HashTable(JDK1.8)相关的知识,希望对你有一定的参考价值。  Concu ... [详细]
author-avatar
囬憶啲伈情_542_256_427
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有